

COLOR COMPUTER ASSEMBLY
LANGUAGE PROGRAMMING
by
William Barden, Jr.

Copyright 1983 by Radio Shack, a division of Tandy Corporation,
Fort Worth, Texas 76102

FIRST EDITION PRINTING 987 65432

All rights reserved. Reproduction or use, without express permission, of
editorial or pictorial content, in any manner, is prohibited. No patent liability
is assumed with respect to the use of the information contained herein.
While every precaution has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or ommissions. Neither is any
liability assumed for damages resulting from the use of the information
contained herein.

International Standard Book Number: Library of Congress Book Number:

Printed in USA

Preface

The Color Computer is an exceptionally good machine on which to learn
assembly language.

For one thing, it uses a 6809 microprocessor. The 6809 microprocessor is a
relatively new microprocessor with a powerful instruction set and addressing
modes. The 6809 has many features that aren’t found in older microproces-
sors such as the Z-80, 6800, and 6502 — completely “position independent”
code, which can be moved anywhere in memory without changing values,
powerful "indexing” capability with "auto increment and decrement” to
automatically adjust the index registers by one or two counts, a "user” stack
pointer defining a user stack area, and a built-in Multiply instruction.

Another feature that makes assembly-language programming attractive on
the Color Computer is the availability of EDTASM+, the Radio Shack
Editor/Assembler/Debug package. This is a ROM-pack assembler that
allows the three functions to be resident in memory at one time. This means
thatyou can switch from Edit mode to Assembly mode in the wink of an eye,
and then immediately switch to the Debug portion of EDTASM+ (ZBUG)
for program checking. After debugging, you can get back to the Editor and
Assembler just as easily.

The interactiveness of EDTASM+ makes it very easy to learn assembly-
language programming, as there are no long time delays loading three
different programs to Edit, Assemble, and Debug.

Finally there’s the Color Computer itself. [feel that it is highly underrated.
Much more than a "game machine,’ it can do some powerful programming.
And, of course, 1t has a built-in high-resolution color graphics capability,
sound generation capability, and other input/output ports, all of which can be
accessed with assembly language in addition to BASIC.

In this book we've tried to make it easy for you to learn 6309 /Color Computer
Assembly Language. We'll take you from the ground up (although some
knowledge of BASIC is a definite help). There're plenty of interactive
examples here, and we've made wide use of EDTASM+ capabilities.

Color Computer Assembly Language Programming has 26 chapters.

The first 18 chapters cover assembly-language basics, the instruction set of
the 6809, the basic addressing modes of the 6809, and use of EDTASM+.
The next 3 chapters describe how to interface assembly-language programs
to BASIC — how to link the two types of code, how to pass "parameters,” and

where in memory to put assembly-language code.

Chapter 22 discusses BASIC ROM subroutines, segments of predefined code
in the BASIC interpreter that can be used by the assembly-language pro-
grammer to do things such as displaying characters on the screen and reading
keyboard data.

i

Chapter 23 describes the more advanced addressing modes of the 6809.
While these modes do not have to be used in assembly-language programs,
that do offer powerful "addressing” options that are not found in many
MICTOProcessors.

The next two chapters, 24 and 25, are the "fun” chapters. These cover video
and graphics work and sound generation. Included are a music synthesizer
program with variable “envelope” and a “"zoom" capability for graphics.

The last chapter, 26, gives some guidelines on writing large assembly-
language programs. It covers the procedures of design, flowcharting, coding,
debugging, and documentation.

Six appendices are also included in the book. Appendix I provides an alpha-
betized list of instructions with a capsulized description of each. Appendix 11
gives a "crib-sheet” type listing of 6809 instructions in more detail. Appendix
[T is a complete listing of EDTASM+ commands. Appendix IV is a conver-
sion chart of hexadecimal, binary, and decimal numbers from 0 through 255
decimal. Appendix V is a listing of "two’s complement” numbers from +127
through -128 decimal. Finally, Appendix VI is a list of ASCII codes for the
Color Computer.

Each chapter is preceded by a “Key Chart,” which lists the material covered in
the chapter, plus the material covered in preceding chapters. The Key Chart
helps in finding a particular topic quickly.

I've had a lot of fun writing this book and hope that you enjoy Color
Computer Assembly-Language Programming as much I have. See you at
$3F00!

William Barden, Jr.

To Aunts Katherine Wilke and Jeanne Damp and Uncles Larry Wilke and
Kelly Damp. (Letters follow if I have my relative addressing correct.)

v

Table of Contents

Chapter 1. 6809/Color Computer Assembly Language 1

The 6809 Instruction Set — Instruction Mnemonics — Comment Lines —
Labels —The Assembly-Language Process — Executing (Running) the Pro-
gram — EDTASM+ Edit Commands

Chapter 2. 6809 Registersoiiiiiriiiiinnnnnnenen... 13

What is a 6809 Register? — Register Functions — Binary and Hexadecimal
— using the ZBUG Modify Register and Modify memory Commands

Chapter 3. Transferring Data to Registers 25
Loading Registers — Immediate Loads — Transferring Data Between CPU
Registers — The EXG Instruction — A Special Clear Instruction — Inherent
Addressing

Chapter 4. Storing Datato Memory35

Extended Addressing — Simple Indexed Addressing — Direct Page
Addressing — When Should You Use Direct and When Extended
Addressing?

Chapter 5. Addition and Subtraction 45

Eight-Bit Adds — Sixteen-Bit Adds — Subtracts — Two’s Complement
Numbers

Chapter 6. Using the Condition Codes 53

More on Adds and Subtracts - the Z Condition Code — The N(egative)
Condition Code — The Compare — A Special CMP — The C(arry)
Condition Code

Chapter 7. Symbolic Addressing, Jumps, and Branches 61

Symbolic Addressing — Unconditional Jumps — Conditional Jumps
(Branches) — Conditions for Branches — A Comparison Test Using Modify
Memory

Chapter 8. Relative Branches, Conditional, and Unconditional 69

Relative Addressing — Types of BRs — Limitations of BRs — The Long
Branch is Not a Fort Worth Ranch

Chapter 9. Increments, Decrements, Complements,
and Logical Operationsiiiveiiiiniinnnn. 79
Increments and Decrements — The LEA for 16-Bit Registers — The NEG

and COM Instructions — Logical Operations — Using ORCC and ANDCC
— A Special AND

Chapter 10. Using the Carry for Gobs of Precision 87
Multiple-Precision Numbers — Eight-Bit Add With Carry — Eight-Bit
Subtracts With "Borrow™ — Other Multiple-Precision Operations

Chapter 11. Generating Data Values and Simple Indexing 95

A List of Data — A Numeric Table Lookup — The FCB Pseudo-Op — Entries
of More Than One Byte — The FDB Pseudo-Op — The FCC Pseudo-Op
—Accessing Multiple-Byte Table Entries

Chapter 12. Indexing Operations Using X and Y 109

Indexed Addressing — Variable Offsets From X or Y — Table Operations
Using Indexing

Chapter 13. Operations of a Different Sort and

Unsigned Comparisonsoooeuuniiiiinieina.n. 121
Types of Orders — Sorting — "Auto” Incrementing and Decrementing —
Labeling a Variable Location — Using Expressions — Using Unsigned

Comparisons -— A Bubble Sort of a Two-Byte Entry Table
Chapter 14. Using Subroutines in Assembly Language 131

Subroutine Basics — The S Stack — Nested Stack Calls — A BSR for Every
RTS — Other Branch to Subroutines

Chapter 15. Using the Stack to Hold Temporary Results 141
Stack Uses — PSHSes and PULSes — Multiple Subroutines
Chapter 16. Rotares, Shifts, and Multiplication 153

Rotates — Logical Shifts — Multiplying and Dividing by Shifting — Hard-
ware Multiplies — A 16 by 8 Multiply — Arithmetic Shifts
Chapter 17. An Unsigned Divide and Signed Multiplies

andDivides 165
An Unsigned Divide — Dividing by Larger Numbers — Doing “Signed”
Multiplies and Divides

Chapter 18. Decimal Arithmetic and Miscellaneous Instructions .. .173

The Decimal Instruction — The RMB Pseudo Op — Using the U Stack —
The NOP Instruction — How to Use 6809 Instructions

Chapter 19. Program Origin and Interfacing
Assembly Language to BASIC 181

Memory Map — The ORG (Origin) Command and /AO — Relocatability —
How to Make All Code Relocatable — Transferring Control to an Assembly-
Language Program — Loading the Object — Defining Where the Object is in
BASIC — Transferring Control to the Machine-Language Code — Executing
CLRSCN

Chapter 20. Passing Parameters to BASIC Programs 193

Passing a Parameter — Passing a Parameter Back — Running the Subrou-
tine in BASIC

vi

Chapter 21. VARPTR and Passing Multiple Arguments

The VARPTR Command — Using VARPTR With Strings — Using
VARPTR With Arrays — Passing Multiple Arguments

Chapter 22. Using ROM Subroutines 211

Cautions On Using ROM Subroutines — A Simple Text Editor — Using
ROM Subroutines for Your Own Code

Chapter 23. How to Use Other Addressing Modes 219

Using the § and U Stack Pointers with Indexing — Using Auto Increment/
Decrement — Accumulator Offset from R — Program Counter Relative —
Indirect Addressing — When Is Indirect Addressing Used? — The EQU and
SET Pseudo-Ops

Chapter 24. Assembly-Language Graphics 231

BASIC Vs. Assembly Language — Memory Layout for Graphics — The Text
Screen — The Graphics Screens — The ZOOM Program

Chapter 25. Assembly-Language Sound 245

How Sound is Generated — A Music Synthesizer — A BASIC Driver for
MUSSYN

Chapter 26. Writing Larger Assembly-Language Programs........ 261

Program Design — Progam Flowcharting — Program Coding — Pro-
gram Debugging — Program Documentation

Appendices

Appendix I. 6809 Instructions Capsulized 267
Appendix II. 6809 Detailed Instruction Set..................... 271
Appendix HII. EDTASM+ Commands 275
Appendix IV. Binary/Decimal/Hexadecimal Conversions 279
Appendix V. Two’s Complement Notation 285

Appendix VI. ASCII Codes for the Color Computer

vii

KEY CHART — CHAPTER 1

INSTRUCTIONS

ABX LBHS CLRB LDS
ADCA BITA CLR LDU
ADCB BITB CMPA LDX
ADDA BLE CMPB LDY
ADDB LBLE CMPD LEAS
ADDD BLO CMPS LEAU
ANDA LBLO CMPU LEAX
ANDB BLS CMPX LEAY
ANDCC LBLS CMPY LSLA
ASLA BLT COMA LSLB
ASLB LBLT COMB LSL
ASL BMI COM LSRA
ASRA LBMI CWAI LSRB
ASRB BNE DAA LSR
ASR LBNE DECA MUL
BCC BPL DECB NEGA
LBCC LBPL DEC NEGB
BCS BRA EORA NEG
LBCS LBRA EORB NOP
BEQ BRN EXG ORA
LBEQ LBRN INCA ORB
BGE BSR INCB ORCC
LBGE LBSR INC PSHS
BGT BvVC JMP PSHU
LBGT LBVC JSR PULS
BHI BVS LDA PULU
LBHI LBVS LDB ROLA
BHS CLRA LDD ROLB
ADDRESSING MODES
INHERENT
DIRECT
EXTENDED
IMMEDIATE
SIMPLE INDEXED
RELATIVE

DISPLACEMENT INDEXED

AUTO INCREMENT/DECREMENT

INDIRECT
SOPHISTICATED

PSEUDO OPS
EQU ORG
FCB RMB
FCC SET
FDB SETDP

Bold Type = Present Chapter
Regular Type = Future Chapters
Atalic-Type-= Past Chapters

viii

ROL
RORA
RORB
ROR
RTI
RTS
SBCA
SBCB
SEX
STA
STB
STD
STS
STU
STX
STY
SUBA
SUBB
SuUBD
SWI
SWi2
SWI3
SYNC
TFR
TSTA
TSTB
TST

EDTASM+ EDITOR COMMANDS

A(SSEMBLE) I(NSERT)
C(OPY) L(OAD)
D(ELETE) M(OVE)
E(DIT) N(UMBER)
F(IND) P(RINT)
H(ARDCOPY) Q(UIT)

R(EPLACE)
T(HARDCOPY)
V(ERIFY)
W(RITE)
Z(BUG)

EDTASM+ ASSEMBLER COMMANDS (A)

/AO ABSOLUTE ORIGIN

/IM IN MEMORY ASSEMBLY

/LP LINE PRINTER
/MO MANUAL ORIGIN
/NL NO LISTING

/NO NO OBJECT

/NS NO SYMBOL TABLE
/SS SHORT SCREEN
/WE WAIT ON ERRORS

EDTASM+ ZBUG COMMANDS

A(SCH) DISPLAY
B(YTE) MODE
C(ONTINUE)
D(ISPLAY)

E(DITOR)

G(0)

H(ALF) SYMBOLIC
I(NPUT) BASE
L(OAD) ML FILE
M(NEMONIC) MODE
N(UMERIC) MODE
O(OUTPUT) BASE

P SAVE ML ON TAPE
R(EGISTER) DISPLAY
S(YMBOLIC DISPLAY)

T DISPLAY BLOCK

T H HARDCOPY BLOCK
U MOVE BLOCK

V (ERIFY) BLOCK
W(ORD) MODE

X BREAKPOINT

Y (ANK) BREAKPOINT
1 EXAMINE PRECEDING
| EXAMINE NEXT

— BRANCH INDIRECT

. FORCE NUMERIC

+ FORCE NUMERIC,BYTE
. FORCE FLAGS

/ EXAMINE

. SINGLE STEP

GENERAL TOPICS

CPU REGISTERS
DATA TO REGISTERS
LOADING AND STORING

ADDITION AND SUBTRACTION

CONDITION CODES
SYMBOLIC ADDRESSING
JUMPS, BRANCHES
RELATIVE BRANCHES

INCREMENTS/DECREMENTS

COMPLEMENTS
LOGICAL OPERATIONS
MULTIPLE PRECISION
DATA VALUES
INDEXING

INDEXING WITH XY
SORTING

SUBROUTINES

STACK OPERATIONS
ROTATES, SHIFTS
MULTIPLES

DIVIDES

DECIMAL ARITHMETIC
BASIC INTERFACING
PASSING PARAMETERS
VARPTR USE

ROM SUBROUTINES
OTHER ADDRESSING
GRAPHICS

SOUND

LARGER PROGRAMS

Chapter 1
6809/Color Computer
Assembly Language

To start off, we'll look at what 6809 assembly language is and how EDTASM+
converts an assembly-language program to machine-language instructions.
We'll also look at some of the Edit Mode commands in EDTASM+ that allow
us to enter assembly-language programs.

The 6809 Instruction Set

The 6809 microprocessor used in the Color Computer has a built-in "instruc-
tion set.’” This instruction set consists of dozens of different types of
instructions.

Hints and Kinks 1-1
Why Do We Say 6809 Instead of 6809E?

The 6809E is a special version of the 6809 microprocessor. The “E”
stands for external clock. We'll just use the generic name “6809”
whenever we're talking about the microprocessor in the Color Com-
puter, even though it should be strictly called the "E”

Computers started out as fast adding machines, and for that reason, a lot of
the instructions are oriented toward arithmetic operations. Instructions that
add two numbers or subtract two numbers are common.

There are other types of instructions that are related to program flow — such
instructions as "Branch to a Location” and "Branch if a Zero Result”

Part of the problem in learning assembly language is in memorizing the
different instructions, their effect, and their formats.

All of the instructions of the 6809 taken together are called the “instruction
set” of the 6809. The instruction set of the 6809 is really the instruction set of
the Color Computer as well, as no new instructions have been added by Radio
Shack. Appendices 1 and Il list the instruction set of the 6809.

Instruction Mnemonics

[t's much easier to say ADDA than to say “Add the contents of the A register
in the ¢pu together with a second operand and put the result in the A
register” Lengthy instruction descriptions are simply denoted by an instruc-
tion mnemonic. There are two parts to the mnemonic, the “operation code;’
and the "operands’’

Take a look at the program in Figure 1-1. This is a short 6809 assembly-
language program to sort data. This program is shown just as it might have
been entered to the Editor of EDTASM+, without having been assembled.

1 6809/Color Computer Assembly Language

20100 ¥ BURBLE SORT

0@11@ BUBSRT CLR PASSNO SET PASS # Io @

2120 PURDIO LDX #4400 POINT 70 SCREEN

00130 LDY #0 SET CHANGE FLAG TO ©
00148 BUPGZ® LDA s X+ GET FIRGT ENTRY
00150 CMPA ' X TEST NEXT

00160 BLS BURD3D GO IF A=R

00170 LDB) X GET SECOND ENTRY
20180 STR -1 X SWAP £ TO A

00150 STA ' X SWAP A TO B

20200 LDY #1 SET *CHANGE"

20210 BUBO3® CMPX #$400+511 TEST FOR SCREEN END
20220 BNE BURDZD GO IF NOT ONE PASS
00230 ING PASSNO INCREMENT PASS #
20240 CMPY #0 TEST CHANGE FLAG
00250 BNE BURO10 GO IF CHANGE OCCURRED
00Z60 LOOP JMP LOOP LOOP HERE

00278 PASSNG FCB 0 PASS #

20280 END

Figure 1-1. Sample Color Computer Assembly-Language Program

You might want to enter the text below by using the EDTASM+ Edit mode,
which works very similarly to BASIC Edit mode. Start by doing an Insert by
entering I followed by ENTER and then entering the text a line at a time.
After the last line, press BREAK, and you'll come back to the EDTASM+
“command mode!" You can use the Edit mode "subcommands™ just as in
BASIC. (Refer to Appendix III.)

Hints and Kinks 1-2
EDTASM+ Edit Mode

The Edit mode in EDTASM+ is almost identical to the Edit mode in
Extended Color BASIC. It works on a character by character basis
within the line. Space along the line by space bar, backspace by left
arrow. You can delete characters by D or nD, where n is the number
of characters to be deleted. You can C(hange) characters by C,
followed by one character or nC followed by “n” characters. There
are many other commands, including H(ack) and K(ill) for those of
you with a penchant for violence. See Appendix 11l for details.

Look at some of the text under the second column.

What you're seeing in the second column is the operation mnemonic for the
instruction. This is sometimes called the op code, for “operation code.” The
op code LDY in the third line stands for Load the Y Register. The op code
several lines down, the CMPA, stands for Compare.

The second part of the instruction mnemonic is the operands portion. This is
sometimes called the argument portion. When taken together with the
op code, the operand and op code define what the instruction does.

The operand for the LDY in the third line is #0, which, when taken together
with the LDY, stands for “Load the Y register with a value of 07

6809/Color Computer Assembly Language 1

The CMPA line really means "Compare the contents of the A register witha
memory byte at an address pointed to by the contents of the X register”
(Quite a mouthful, eh? Don’t worry about what the instructions do at this
point. We'll be getting into that soon enough!)

Comment Lines

Any line that starts with an asterisk is simply a comment line and is not
treated as an instruction. Any text in the last part of the line (the fourch
column) is considered a comment, also.

Hints and Kinks 1-3
When Should You Use Comment Lines?

There can't be enough comment lines or comments after the oper-
ands. There is a special Hell for programmers who don’t comment.
They are doomed to figure out the Extended Color BASIC program
by looking at machine-code values with faulty PEEKS.

In the code we're using in this book, you don’t have to enter any comments if
g y y
you're keying in the program yourself. They will not affect the program.

Labels

The BUBSRT, BUBO10, and BUB020 names are called "labels” A label is
used in assembly-language in lieu of a line number as in BASIC. They are
equated to the memory location at which the instruction is stored. The LDY
#0 instruction, for example, might be stored in RAM memory location
$3F00, but the label BUBSRT would be the label of the instruction during
assembly.

The Assembly-Language Process

The entire collection of text that defines 6809 instructions and comments
constitutes an “assembly-language” program. What do we do with it? How
do we feed it into the computer?

The 6809 microprocessor cannot accept text and decode it. Maybe the next
generation of microprocessors will. We have to take the text representing the
assembly-language program and convert it into a form that the 6809 can
understand — binary ones and zeroes.

This process is called "assembly.” EIDTASM+ has a built-in assembler that
will translate the text of the program in "assembly language” into “"machine
language.’ the binary ones and zeroes.

The EDTASM+ command for this is
A

1 6809/Color Computer Assembly Language

for Assemble. The assembly command has different options, or “switches”’
The /IM "switch” means "assemble in memory rather than outputting code
to cassette tape!” Assuming that we had the text in memory, we could do a

*A/IM

to assemble the text.

Hints and Kinks 1-4
When Should You Use Assembler Output on
Cassette?

Use the A command with “object” output to cassette only for 1) long
programs for which the source file would take a long time to load 2) a
relatively final version of the program.

It’s so easy to load in a source file and reassemble, that outputting the
assembler object to cassette is not as important as it could be. Of
course, save the "source” or text file periodically, and make several
copies. See the W command for saving source files.

After doing this you'd see a rapid display of the text in the assembly-language
portion “scrolling up” on the screen. For the program above, you'll see
something that looks like Figure 1-2.

o120

DALA T7F BA?5 @9110
PALD BE 0420 20120
BA70 108BE 0000 20130
BA74 AL 80 0014
BA76 Al 84 2150
oA78 23 oA 20160
DA7A E6 84 03170
OA7C E7 iF ep18a
DATE A7 84 20190
2ABQ 10BE 0001 [rala gl }
@a84 8C O5FF "] Q2
oAB7 2é& EB
PAB7 7C BAT5
2ABC 108C 2006 PRz40
A0 26 DE 00230
A9z 7E DATZ PR260
BAIS o0 22270

alalrala} [Jedadva}
20002 TOTAL ERRORS
BURR1O BALD
BUBQZ@ 0OA74
BUB@32 BAB4
BUBSRT BALA
LOOP BATZ
PASSNO QA95

* BUPPLE
BUBSRT
BpURQLG

PUBQLQ@

BURA30

LOOP
PASSNO

SORT

CL.R
LDX
L.DY
L.DA
CMPA
BLS
i.DE
STR
STA
LDY
CMPX
BNE
INC
CHMPY
ENE
JMP
FCB
END

PASGNO GET PAGG # TOo @

#4400 POINT TO SCREEN

#0 SET CHANGE FI.AG TO @
. X+ GET FIRST ENTRY

v X TEST NEXT

RURA3ZA 6O IF A=R

) X GET SECOND ENTRY
~1sX SWAP P TO A

) X SWAP A TO B

#1 SET " CHANGE"
#$400+511 TEST FOR SCREEN END
RURDZO G0 IF NOT ONE PASS
PASSNO INCREMENT PAGS #

#0 TEST CHANGE FLAG
BURD1Q GO IF CHANGE OCCURRED
LOOP LOOP HERE

7] PASS #

Figure 1-2. Sample Assembly

Actually, we've "cleaned up” the display for you. The display on the Color
Computer is in 2 lines because of the 32-character per line limitation of the

6809/Color Computer Assembly Language 1

Color Computer, and we've taken it and put it on one line to make it easier to
read.

The portion on the left of the text area represents the machine-language
output of the assembler. This is sometimes called “"object language™ and the
assembly-language text is sometimes called “source language”

The hexadecimal values in the second column are the actual hexadecimal
codes, which, when converted to binary values, represent the codes for each
instruction in the assembly-language program.

What have we really done at this point? We've really only used a program to
translate a more English-like form of a program into binary ones and zeroes,
the program being the assembler program in EDTASM+.

The machine-language form is on the screen. The actual machine-language
values are also in memory at this point, and the memory locations in which
they are stored are shown under the first column.

The first column shows a hexadecimal RAM location for the machine-
language program. (We'll explain hexadecimal in the next chapter.) Note
that the locations do not increment by one for each instruction. That’s
because the machine-language codes vary in size from | to 4 bytes in length.
The BLS instruction, for example, is 2 bytes long in machine-language form.
The LDX is 3 bytes long.

EDTASM+ is different from some assemblers that do not put the machine
code in memory after assembly. In these assemblers, the “object code” goes
onto a cassette or disk file. You can also do this with EDTASM+, by selecting
another assembly option. We'll show you how in a later chaprer.

Note that there is generally a "one-for-one” correspondence between an
assembly-language form of the instruction, and the machine-language form
of the instruction. One machine-language instruction is generated for each
assembly-language instruction. Comment lines are ignored and do not gen-
erate any object code, along with certain other types of assembly-language
text.

The A/IM command can be used to assemble any assembly-language pro-

gram you have in EDTASM+. You may create your own program, using the

EDTASM+ editing commands, or you can assembly existing assembly-

y y

language “source” programs that you've previously stored on cassette tape.
8 &

If you have a line printer on your system, you can use the
A/LP

form of the Assemble command to get an assembly-language listing of the
program.

1 6809/Color Computer Assembly Language

Another form of A is
A/IM/WE

This will assemble the program “in memory” and also halt the assembly if
any assembly errors are found. The type of error will be displayed before the
line in which the error occurred, as shown in Figure 1-3.

20100 * PUBPLE SORT FOR TWO-RYTE TABLE

PALE BE 2400 20118 BUBRSRT |.DX #4400 POINT TO SCREEN
BAZL 7F BA43 22120 CLR CHANGE RESET CHANGE FLAG
BAD OPCODE

20130 PUBB11 L$% s X++ GET FIRST ENTRY

QAZ4 10A3 84 20140 CMPD s X COMPARE

BAZ7 23 @D 20150 BLS RUBROZ1 GO IF A<=R

BAZ9 10AE B4 20160 LDY s X GET ZND ENTRY
BAZC ED 84 D170 STD » X SWAP ENTRIES
BAZE 10AF 1E 20180 STY =Z X

BA31 BS o1 20190 LDA #1 ONE

@A33 87 DA43 [ped i} STA CHANGE SET CHANGE FLAG
BA36 8C @5FE @210 PUBRZ1 CMPX #$400+510 TEST FOR END

UNDEFINED SYMBOL
BYTE OVERFLOW

QA39 26 FE BOzzQA BENE BUR@1 1 GO IF NOT ONE PASS
BA3E R6 BA43 0230 LDA CHANGE TEST CHANGE FLAG
DA3E z&6 DE 20240 BNE PUBSRT GO IF CHANGE OCCURRED
BA4D 7E BA40 20250 LOoP JMP LOOP LOOP HERE
BA43 20 QD26@ CHANGE FCR 2 INITIALLY @

2002 ROz70 END

P0@@3 TOTAL ERRORS

BUBO11 Q020 u
BURBZ1 BA36
BUBSRT QALE
CHANGE @A43
LOOP BA40

Figure 1-3. Assembly Errors

If you've never run an assembly before, take & moment now to enter the
program and assemble it under EDTASM+. Use the A/IM or A/IM/LP
assembly commands.

Executing (Running) the Progam

Once you have assembled a program you can execute it very easily in
EDTASM+.

To execute any program under EDTASM+, get an error-free assembly listing
by doing A/IM, go to ZBUG by entering a Z command, and then do a

GMMMM or GSTART

where MMMM is a hexadecimal address corresponding to the starting
location of the program and START is the starting label.

Try it for this program. If you've entered the program correctly, the starting
location of the program should be “BUBSRT,” so do a

6809/Color Computer Assembly Language 1

*A/IM

Z
#XLOOP
#GBUBSRT

The X command sets a “breakpoint” in ZBUG. A breakpoint is simply a
stopping point at which ZBUG regains control, and all we've done here is to
tell ZBUG 1o execute the program starting at BUBSRT, but to regain control
when the program reaches LOOP.

If you enter the sequence above, you should see the program execute. This
program takes all of the text on the text screen in the Color Computer and
“sorts” it in alphanumeric sequence. You should see all of the screen text
rearrange itself in numeric order as shown in Figure 1-4. (Screen contents
may differ from figure.)

AAAAAAAABRBRREEBEBECDEEF GLLNNOOOO
OPPRRRRRSSSSSTTTTUUUUUZ

#+0000000
B200VVDOAVVABDDOA 2346666778897

Figure 1-4. Sort Action

After the last part of the sort, the program will “fall through” to the
breakpointed instruction as shown in Figure 1-5. (Screen contents may differ
from figure.)

OPPRRRRRSSSSSTTTTUUULUZ

#0 BRK a LOOP #
#

Figure 1-5. Breakpoint Action

1 6809/Color Computer Assembly Language

EDTASM+ Edit Commands

Before we get into the discussion of actual instructions, let’s mention some
other related EDTASM+ commands.

® The Q command simply takes you back to BASIC. Any program or data you
have in the EDTASM+ buffer will be lost; you'll have to reload EDTASM+
to continue.

® The P(rint) command is a misnomer that lets you display a range of lines
from the text buffer on the screen. Use

P#:*
to print the entire text buffer or
PLLL-MMM

to print a range of lines from starting line LLL through ending line number
MMM.

The H(ardcopy) command lets you get a listing of the assembly-language
portion of the text only (not the machine-language) on your system
printer. The format for Hardcopy is

HLLL:MMM

where LLL is the starting line number and MMM is the ending line
number. T is identical to the H format except that it prints text without
line numbers.

The N(umber) command renumbers the assembly-language lines. The
format of N is

NLLL,II

where LLL is the starting line number for the renumber and II is the
increment. Doing a

N200,20

would renumber the current lines with the new lines starting at line
number 200 and increasing by 20 for each line.

® Another form of the I(nsert) command lets you insert lines between any
existing lines. The format of Insert for this purpose is

ILLLII

where LLL is the line number for the insert point and I1 is the increment. If
you had text line 100, 110, 120, 130, and so forth, and you wanted three new
lines between lines 120 and 130, you might say

1121,1

6809/Color Computer Assembly Language J_

The Insert mode would then be active and you'd see line 120 displayed in the
text area, followed by the number 121. You could then enter the 3 new lines
and press BREAK to exit. If you wished, you could then use the renumber
command N to renumber.

1f the Insert line number exists, the Insert mode will give an error message
“NOROOM BETWEEN LINES! Inserts can be done until the line numbers
increment up to an existing line number. If you run out of space, simply
renumber by N and continue the Insert.

The W command lets you Write an assembly-language “source” (text) file to
cassette. The format of W is

W NAME

where NAME is the name of the file. Note that the file written is the
assembly-language text only. It is not a file that can be run as a program. You
can only use it to assemble under EDTASM+. If you don't provide a name for
the W command, the name "NONAME" is used.

The L command lets you load a source file from cassette. The format of L is
L

or
L NAME

where NAME is an optional file name. If no name is specified, the next file
on cassette will be loaded.

V(erify) works the same as load except that the file is not loaded but
compared with the contents of the memory text buffer. It's used directly after
a W(rite) to verify a good write.

You can switch back and forth between the Edit mode, assembler, and ZBUG
at will as EDTASM+ contains the editor, assembler, and debug package in
memory all at one time. This makes it very easy to edit, assemble, debug, and
then go back to correct errors you've found by doing another edit of the text,
reassembling, and trying it again.

Review
To recap what we've covered in this chapter:

® The instruction set of the 6809 includes dozens of instructions, some
relating to arithmetic operations, and some relating to program control

® The instruction set is abbreviated by using mnemonics for the operation
and the operands for each instruction

1 6809/Color Computer Assembly Language

Comment lines start with an asterisk and do not generate machine-
language code

Labels are used to represent an instruction by a symbolic form, rather than
as an absolute location

An assembler converts assembly-language code into the machine-
language ones and zeroes that the 6809 requires for executing instructions

The Q command returns you to BASIC or TRSDOS

The P command allows display of text

The H or T command allows hardcopy printing of the text
The N command renumbers the text

Insert lets you insert assembly-language lines between existing lines or to
start a new program

The W command lets you write out an assembly-language source file to
cassette or disk; the V command lets you verify the write

The L command allows you to load a source file previously written out by a
W command

For Further Study

Appendix I 6809 Instructions Capsulized
Appendix III EDTASM+ Commands

10

KEY CHART — CHAPTER 2

INSTRUCTIONS EDTASM+ EDITOR COMMANDS

ABX LBHS CLRB LDS ROL ALSSEMBEE HMNSERT R(EPLACE)

ADCA BITA CLR LDU RORA C(OPY) —HOAD)- FHARDCOPYS

ADCB BITB CMPA LDX RORB DI(ELETE) M(OVE) YERHY-

ADDA BLE CMPB LDY ROR i =ia > m NOMBERT WIRITE—

ADDB LBLE CMPD LEAS RTI F(IND) —PLRINF} B

ADDD BLO CMPS LEAU RTS HARDCOPY— Qrttr

ANDA LBLO CMPU LEAX SBCA

ANDB ~BLS = CMPX LEAY SBCB EDTASM+ ASSEMBLER COMMANDS (A)

ANDCC LBLS ~ CMPY LSLA SEX /AO ABSOLUTE ORIGIN /NO NO OBJECT

ASLA BLT COMA LSLB STA sty mEmtORY-ASSEMBLY /NS NO SYMBOL TABLE

ASLB LBLT COMB LSL STB P HN—PRINFER /SS SHORT SCREEN

ASL BMI COM LSRA STD /MO MANUAL ORIGIN

ASRA LBMI CWAI LSRB STS \"NO LISTING WETWATTONERRORS

ASRB BNE DAA LSR STU

ASR LBNE DECA MUL STX

BCC BPL DECB NEGA STY EDTASM+ ZBUG COMMANDS

LBCC LBPL DEC NEGB SUBA A(SCIl) DISPLAY T DISPLAY BLOCK

BCS BRA EORA NEG SUBB B(YTE) MODE T H HARDCOPY BLOCK

LBCS LBRA EORB NOP susD C(ONTINUE) U MOVE BLOCK

BEQ BRN EXG ORA Swi D(ISPLAY) V (ERIFY) BLOCK

LBEQ LBRN INCA ORB Swi2 E(DITOR) W(ORD) MODE

BGE BSR INCB ORCC SwI3 6&t6+ N—BAEAKLOIN—

LBGE LBSR INC PSHS SYNC H(ALF) SYMBOLIC Y (ANK) BREAKPOINT

BGT BVC JMP PSHU TFR I(NPUT) BASE t EXAMINE PRECEDING

LBGT LBVC JSR PULS TSTA L(OAD) ML FILE | EXAMINE NEXT

BHI BVS LDA PULU TSTB M(NEMONIC) MODE —~ BRANCH INDIRECT

LBHI LBVS LDB ROLA TST N(UMERIC) MODE ;. FORCE NUMERIC

BHS CLRA LDD ROLB O(OUTPUT) BASE + FORCE NUMERIC,BYTE
P SAVE ML ON TAPE . FORCE FLAGS
R(EGISTER) DISPLAY / EXAMINE

ADDRESSING MODES

INHERENT S(YMBOLIC DISPLAY) SINGLE STEP

DIRECT

EXTENDED GENERAL TOPICS

IMMEDIATE CPU REGISTERS SUBROUTINES

SIMPLE INDEXED DATA TO REGISTERS STACK OPERATIONS

RELATIVE LOADING AND STORING ROTATES, SHIFTS

DISPLACEMENT INDEXED ADDITION AND SUBTRACTION MULTIPLES

AUTO INCREMENT/DECREMENT CONDITION CODES DIVIDES

INDIRECT
SOPHISTICATED

SYMBOLIC ADDRESSING

JUMPS, BRANCHES
RELATIVE BRANCHES

INCREMENTS/DECREMENTS

DECIMAL ARITHMETIC
BASIC INTERFACING
PASSING PARAMETERS
VARPTR USE

PSEUDO OPS COMPLEMENTS ROM SUBROUTINES
EQU ORG LOGICAL OPERATIONS OTHER ADDRESSING
FCB RMB MULTIPLE PRECISION GRAPHICS
FCC SET DATA VALUES SOUND
FDB SETDP

Boid Type = Present Chapter
Regular Type = Future Chapters
Hakie—+ype - Past Chapters

INDEXING
INDEXING WITH XY
SORTING

LARGER PROGRAMS

11

12

Chapter 2
6809 Registers

The 6809 has a number of high-speed memory locations within the micro-
processor called “registers”” We'll look at the “architecture” of the 6809 in
this chapter and also get our feet wet with binary and hexadecimal operations
in addition to looking at some ZBUG commands that will let you manipulate
data.

What Is a 6809 Register?

By this time you probably know what RAM (random-access-memory) and
ROM (read-only-memory) are, but we'll briefly describe them, anyway. RAM
is a "read-write” memory organized in bytes, which are 8 bits or binary
digits long, as shown in Figure 2-1. ROM is a "read-only” memory also
organized in bytes, as shown in the figure.

ADDRESS
0 $0000
FIRST
16,384 (16K)
BYTES OF
RAM
8 BITS/BYTE
N \
16383 $3FFF
SECOND ONE BYTE OF
16,384 (16K) ROM OR RAM
BYTES OF MEMORY
RAM

32767 STFFF
32768 $8000

EXTENDED COLOR
BASIC ROM 8192
(8K BYTES)

COLOR BASIC
ROM 8192 (8K)

BYTES
49151 $BFFF

49152 $CO00

ROM AND
“HARDWARE"
ADDRESSES
8192 (8K)
BYTES

65535 S$FFFF

Figure 2-1. Memory Bytes

AbitiseitheraOora l,onoroff, lighted or unlighted. A typical byte of 8 bits,
therefore, might be something like 10110111 — 8 different bits of any
combination.

13

2 6809 Registers

The 6809 microprocessor in the Color Computer contains a group of "regis-
ters,” which are nothing more than memory locations, very similar to RAM.

Unlike RAM and ROM, though, which are addressed by a location value of 0
through 65,535, microprocessor registers are called by letter designations, as
shown in Figure 2-2.

CONDITION CODES

efr[nu]i[n]z]v]c]

0
A B
[] accumuLators
X
. v - REGIS
TERS
[]
u
L l
S §1o'?uc1"(ens
L B
pC
PROGRAM COUNTER
L R
P
{ | owmecT pace

Figure 2-2. 6809 Registers

The letter designations are not necessarily related to their functions,
although some are.

In general, 6809 registers, or "cpu registers,’ are used to hold the results of
temporary operations. Because they can be read from or written to at faster
speeds than RAM memory, using cpu registers rather than RAM memory
locations speeds up the microprocessor instructions, which speeds up any
program.

Hints and Kinks 2-1
What is a CPU?

CPU stands for “central processing unit.’ In fact, whenever we talk
about cpu we mean the microprocessor in the Color Computer, the
6809. CPU is one of those archaic terms that dates back to the time of
wooden computers and iron programmers.

The entire “instruction set” of the 6809 and other microprocessors is geared

14

6809 Registers 2

to using the cpu registers. Although there are many instructions which
handle reading and writing to memory, just about all data passes through one
or more of the cpu registers.

Register Functions

To examine the 6809 registers we'll have to use ZBUG, the "debugging”
program of EDTASM+. Load EDTASM+ and enter a Z after the asterisk
prompt. You'll automatically go to ZBUG as indicated by a pound sign
prompt. Any time you see the # prompt, you'll know that you're in ZBUG.
(To get back to the Editor/Assembler, enter an E.) Now enter an R. You
should see this dialogue:

*Z.

HR
A=00 B=00 DP=00 CC=00 =
X=0000 Y=0000 U=0000 S§=0777
PC=0000

#

This is a listing of all the 6809 cpu registers.

Hints and Kinks 2-2
When Do the Registers Change?

You'll notice that if you enter ZBUG "cold” that most of the registers
are zeroed. The R command always displays the current state of the
registers as modified by your program. You haven't done anything at
this point, so all registers but S are zeroed. S points to a “stack area”
in RAM, which we'll talk about in a later chapter.

All register contents are shown in hexadecimal, a shorthand way of repre-
senting binary. There are two hexadecimal digits for every 8 bits, so you'll see
2 hex digits under many of the registers.

Some of the registers hold 2 bytes instead of 1 byte however, twice as much as
other registers or RAM locations. In this case you'll see four hex digits.

Hex digits are 0 through 9 and A through F. We'll explain them in a moment.

The last register is the PC, or Program Counter. This is the 2-byte register in
the cpu that “points to” the next microprocessor instruction in memory.

Firstare "A” and "B." The A and B displays have 2 hex digits after the equals
sign, as both the A and B registers hold 8 bits.

Next is the DP, or Direct Page, register. This is an 8-bit register represented
by 2 hexadecimal digits. We'll talk about the DP in a later discussion, but for
the time being we'll tell you that it allows the 6809 to reference memory
locations by 256-byte pages, and, is somewhat of an embellishment.

Next is a special register called "CC” or the condition codes register. This is

15

2 6809 Registers

really not a register at all, but a collection of 1-bit "flags™ that are used to
represent the results of instructions. These flags all have special meanings
that we'll discuss in later chapters. For now, just note that there are 8 of them,
and the 8 are represented by two hexadecimal digits.

The next four registers in the cpu are the X, Y, U, and S registers. Each of
these are 16 bits or 2 bytes, and are represented by 4 hex digits.

Binary and Hexadecimal

If you want to do assembly-language programming, you'll have to become a
lictle familiar with binary and hexadecimal notation. You won't have to
become a math whiz at it, but you will have to at least be able to convert
between decimal numbers and binary and hexadecimal and the reverse.

Let’s consider 8- and 16-bit binary numbers, since those are the ones we’ll be
working with the most. Each 8-bit number represents data as shown in
Figure 2-3.

THESE “BIT POSITIONS”

ARE NUMBERED
ACCORDING TO POWER

7,6,5,4,3,2,1,80
OF 2 THEY REPRESENT

20 POSITION (1)
2' POSITION (2)
2 POSITION (4)
22 POSITION (8)

2¢ POSITION (16)
[_,. 2* POSITION (32)
L 2° POSITION (64)
L, 2’ POSITION (128)

Figure 2-3. Binary Representation

Hints and Kinks 2-3
Must I Know Binary and Hexadecimal
To Do Assembly Language?
Well, you can get by up to a point. . .uh. . .if you're not going to be

doing much arithmetic. . .that is....oh all right, the answer is
YES. There goes another book sale. ..

On the other hand, you don’t have to become adept at it immediately.
Give it a chance, it’s easier than it looks. Soon you'll be using binary
and hex without much trouble.

Binary
Each digit position of an 8-bit binary number represents a power of two. The
“bit position” on the right is 2 to the zero power, or 1. The next is 2 to the first

16

6809 Registers 2

power or 2. The next position is 2 to the second power, or 4. The next
positions are 8, 16, 32, 64, and 128.

To find out the equivalent decimal number represented by an 8-bit binary
number, just add together the powers of two represented:

10101100 =?
128
+32

+8
+4

10101100 = 172 decimal

To convert from decimal to binary, find out the powers of two that make up
the decimal number. To convert 135 to binary, for example:

135 =2
Does 128 “go” into 1357 - yes, 135-128=7
Does 64 "go” into 7?2 - no
Does 32 “go” into 72 - no
Does 16 “go” into 7?2 - no
Does 8 “go” into 77 - no

Does 4 “"go” into 7?7 - yes, 7-4=3
Does 2 "go” into 3? - yes 3-2=1
Does 1 “go” into 1?7 - yes 1-1=0

135 = 128+4+2+1 = 10000111 in binary

If this all seems confusing, don’t despair. We have an appendix to convert
between decimal, binary, and hexadecimal in the back, Appendix IV. It will
convert all decimal values from O through 255 into either binary or hex.
We've also included a procedure to convert decimal values from 256 through
65,535 and that'll cover just about all of the numbers used in this book.

Before you look at the Appendix for binary conversions, though, try some
values yourself:

® What is 01110010 binary in decimal?
What is 10101010 binary in decimal?
What is 255 decimal in binary?
What is 33 decimal in binary?

Did you get the answers without looking in the Appendix? The answers are

e 01110010 = 114 decimal
® 10101010 = 170 decimal
e |]111111 =255 decimal
® 00100001 = 33 decimal

When you're using 16-bit binary numbers, the process is the same, but the
17

*) 6809 Registers

additional bits represent larger powers of 2, as shown in Figure 2-4. The
“high-order” bits represent 32768, 16384, 8192, 4096, 2048, 1024, 512, and
256. The "low-order” 8 bits represent values as in 8-bit numbers. We won't
burden you with a lot of exercises, but we'll just show you one conversion:

1010111100001111 =?

32768

8192

2048

1024

512

256

8

4

2

1

44815

EEEE X I

TTPIPTIOLSETE N2 0ww-~
SRR s e
EMCHHHICHICHHMNONNI

15141912, 11,10, 9,8 ,7,6,5,4,3,2 1, 0 «—BIT POSITIONS

r T l l I l T l T T ‘l CORRESPOND
AL l J 1 L1 I | J R]] L TO POWER OF
T T TWO REPRESENTED

Figure 2-4. Sixteen-Bit Binary Numbers

You can see that it gets rather tedious to represent long strings of binary
numbers. Programmers use a kind of shorthand to make things more com-
pact. The shorthand is called “hexadecimal”

The hexadecimal numbers and their decimal equivalents for 0 through 15 are
shown here

Decimal Binary Hexadecimal Decimal Binary Hexadecimal

0 0000 0 9 1001 9
1 0001 1 10 1010 A
2 0010 2 11 1011 B
3 0011 3 12 1100 C
4 0100 4 13 1101 D
5 0101 5 14 1110 E
6 0110 6 15 1111 F
7 0111 7

8 1000 8

18

6809 Registers 2

To convert any binary number to hexadecimal, simply divide into groups of 4
bits and use the chart on the previous page to find the hex equivalent of each
group, as shown in Figure 2-5.

CONVERTING FROM BINARY TO HEXADECIMAL

1011100100110110 ORIGINAL
GROUP IN 4 BITS

1011 1001 0011 0110 CONVERT FROM TABLE
B 9 3 6 HEXADECIMAL

CONVERTING FROM HEXADECIMAL TO BINARY

AAp1 ORIGINAL
// \\\\ CONVERT FROM TABLE

1010 1010 0000 0001

GROUP

1010101000000001 BINARY
Figure 2-5. Converting from Binary to Hexadecimal

To convert back again, translate each hex digit to a 4-bit binary value, as
illustrated in the figure.

You can also use the ZBUG "“calculator mode” to easily convert between
decimal and hexadecimal. Use this sequence to convert from decimal to
hexadecimal:

#110 (sets input "base” to decimal)
#O16 (sets output “base” to hexadecimal)
#16=10

To use the above sequence, get to ZBUG by typing Z from the Editor/
Assembler. Then set the input “base” to decimal, or 10. Set the output "base”
to hexadecimal, or 16. If you then type in any number followed by an equals
sign, ZBUG will spew out the hexadecimal equivalent. Try some values.

Hints and Kinks 2-4
What is a “Base”?

The base of the number is the “power” used in the positional
notation of a number. We use base 10 in decimal numbers — 9876 is
actually 9 times 10 to the third power + 8 times 10 to the second
power + 7 times 10 to the first power + 6 times 10 to the zero power.

19

2 6809 Registers

The only reason we use base 10 is because we have 10 toes. (Anthro-
pologists speculate that primitive man first counted on his toes and
then went to his fingers when he saw more than 10 wildebeests.) An
E.T. might use a base of 4 or 9, depending upon the number of digits
he had.

To convert from hexadecimal to decimal, reverse the procedure:

#116 (sets input base to hexadecimal)
#O10 (sets output base to decimal)
#16=22T

Notice that the "T” suffix indicates decimal. Any number typed in with an
equals sign behind it will be taken to be a hexadectmal number by ZBUG, and
ZBUG will return a decimal value. Try some values.

The easiest way to convert between the three types of numbers is to use
ZBUG or the Appendix. After a while, you be able to work well with binary
and hex numbers because you will see them frequently.

Hexadecimal numbers usually have a “8” prefix to indicate that they are in
hex. The number $0100, for example, is 100 hex, or 256 decimal
($100=000100000000 binary).

Hints and Kinks 2-5
Representing Hexadecimal Numbers
Hexadecimal numbers can be represented by a prefix of “$” as in
$0400 or a suffix of "H” as in 3000H in EDTASM+. We'll forget

about the "H” suffix, as standard Motorola format for the 6809 is a
prefix of “§

Hexadecimal numbers sometimes have a "leading” O if the number starts
with A through F. The reason for this is that many programs cannot decide

whether a number like FACE is a hexadecimal number, or a text name. A
OFACE leaves no doubt.

Using the ZBUG Modify Register

and Modify Memory Commands
To give you some experience in hexadecimal, we'll show you the ZBUG
“open” register or memory commands. These commands allow you to
observe the contents of a 6809 register or memory location and to change the

contents. You can change the “input base” and “output base” just as we did in
the calculator mode above.

ZBUG Modify Register
This command lets you look at the contents of a cpu register. The form is

register/
20

6809 Registers 2

where “register” is a register name of A, B,DP,CC,X,Y, U, S,orPCand "/”
is the slash key. For example, to look at the contents of A after entering
ZBUG:

*Z
#A/ 0 (contents of A is 0)

To change the contents, just type in a value:
#A/ 0 AA (ENTER)

Here we've typed in hexadecimal AA ($AA). To see if the change was made,
look at A again

HA/ 0AA
Try some other values to see the changes.

In this case both the "input base” and "output base” were reset to hexa-
decimal on entering ZBUG. You can use the I and O ZBUG commands,
though, to change either the input or output base or both. To input in decimal
and display, or output, in hexadecimal, do

#110

#0106

#A/ 0AA 13 (A changed to 13 decimal)
#A/ oD (output is hexadecimal)

Try changing the other registers. Use the mnemonics of A, B, DP,CC, X, Y,
U, S, and PC.

ZBUG - Modify Memory
The ZBUG slash operator also lets you display or change any location in
memory. The format here is

#MMMM
where MMMM is a 1- to 4-digit hexadecimal value.
Enter

#3000/
You should have seen something like

#3000/ BITA <OFF

This is clearly not a decimal or hexadecimal value. In fact, it’s a "mnemonic”
value representing the instruction mnemonic at memory location hexa-
decimal $3000. To get a value, we've got to change the “examination mode”
of ZBUG to "byte mode” by

#B
#3000/ 95

We'll talk about the mnemonic mode later, but for now, just remember to

21

2 6809 Registers

change to "byte” mode by a B if you expect to sce the memory location
displayed in hexadecimal.

Before you modify a memory location, let me give you this word of advice:
KNOW WHAT MEMORY LOCATION YOU'RE MODIFYING

If you don't know what memory location you're moditying, the results could
be disastrous. BASIC and EDTASM+ use certain RAM locations for stor-
ing variables, and changing locations indiscriminantly could “blow up”
BASIC or EDTASM+. Well, I said disastrous, but the worst that would
happen is that you'd have to reset the Color Computer. All right, so it's not
catastrophic ... Just remember, though, that if you start modifying low
memory in the first 256 or 512 bytes you may see some unexpected results.

Try modifying RAM location $3000 by

#3000/ 95 123
#3000/ 23

Why'd we get the "237? Well, the input mode was hexadecimal, and we
entered 123, or hex $123, which is too- large for the memory location.
Remember, there are two hex digits for every 8 bits, and 4 hex digits for every
16 bits. EDTASM+ used the last two hex digits.

By the way, from now on I'll use "hex” as shorthand for “hexadecimal?” T'll
slip tin a hexadecimal from time to time, however, just to remind you about
the formal name.

You can use the down arrow key in ZBUG to examine or change a location
and then examine the next location. As each location is examined, you can
either enter a new value, or leave it as is. Just press DOWN ARROW after
observing the value or entering a new value. Press ENTER to stop the
sequence.

Suppose you wanted to change locations $3000 through $3005 to $12, $34,
$56, $78, $9A, and $BC. You'd have something like

3000/ XX 12 (DOWN ARROW)
3001/ XX 34 ”
3002/ XX 56 ”
3003/ XX 78 ”
3004/ XX 9A ”
3005/ XX BC ”

(We’ve used the XX values to represent two hex digits the values of which
may vary.)
To get out of the memory change mode, just hit ENTER before any value.

You can also use the UP ARROW in similar fashion to look at a preceding
location. You can intermix UP ARROW and DOWN ARROW in any
combination.

22

6809 Registers 2

ZBUG will allow you to change any area of memory except the ROM area
from location $8000 on up. Of course, you can’t change non-existent memory,
either! If you have a 16K machine and try to change location $7FFF, you
won't have much luck

#7FFF/ OFF 12 BAD MEMORY
#
Review
To review what we've learned in this chapter:

® A register is a special fast-access memory location in the microprocessor
used to hold temporary results

® Registers are either one byte (8 bits) or two bytes (16 bits) long
® The registers are named A, B, DP, CC, X, Y, U, §, and PC
® Binary notation represents data with binary digits of 0 and 1

® Bit positions represent powers of two starting with 2 to the zero power (1)
on the right and increasing powers to the left

® Numbers can be converted from binary to decimal by adding together the
“weights” of 128, 64, 32, etc.

® Numbers may be converted from decimal to binary by seeing which
powers of 2 “go” into the decimal number

® Hexadecimal representation is a shorthand notation for binary numbers
® Hexadecimal digits are 0 through 9 and A through F

® To change from binary to hex, convert 4-bit groups into hex digits; to
reconvert, reverse the procedure

® The ZBUG slash command lets you change register values
e The ZBUG slash command also lets you display memory areas

® The input and output “bases’ are controlled by the I and O commands in
ZBUG. Use 110 or 010 for decimal and 116 or O16 for hexadecimal

® The ZBUG B command sets the “"byte” examination mode

For Further Study

Appendix 11l EDTASM+ Commands
Appendix 1V Binary/Decimal/Hexadecimal Conversions

23

ADDRESSING MODES

ABX LBHS CLRB
ADCA BITA CLR
ADCB BITB CMPA
ADDA BLE CMPB
ADDB LBLE CMPD
ADDD BLO CMPS
ANDA LBLO CMPU
ANDB BLS CMPX
ANDCC LBLS CMPY
ASLA BLT COMA
ASLB LBLT COMB
ASL BMI CcOoM
ASRA LBMI CWAI
ASRB BNE DAA
ASR LBNE DECA
BCC BPL DECB
LBCC LBPL DEC
BCS BRA EORA
LBCS LBRA EORB
BEQ BRN EXG
LBEQ LBRN INCA
BGE BSR INCB
LBGE LBSR INC
BGT BVC JMP
LBGT LBVC JSR
BHI BVS LDA
LBHI LBVS LDB
BHS CLRA LDD
INHERENT

DIRECT

EXTENDED

IMMEDIATE

SIMPLE INDEXED
RELATIVE

DISPLACEMENT INDEXED

KEY CHART — CHAPTER 3

INSTRUCTIONS

LDS
LDU
LDX
LDY
LEAS
LEAU
LEAX
LEAY
LSLA
LSLB
LSL
LSRA
LSRB
LSR
MUL
NEGA
NEGB
NEG
NOP
ORA
ORB
ORCC
PSHS
PSHU
PULS
PULU
ROLA
ROLB

AUTO INCREMENT/DECREMENT
INDIRECT
SOPHISTICATED

PSEUDO OPS
EQU ORG
FCB RMB
FCC SET
FDB SETDP

Bold Type = Present Chapter
Regular Type = Future Chapters

-l-taUc_typa]: Past Chapters

24

ROL
RORA
RORB
ROR
RTI
RTS
SBCA
SBCB
SEX
STA
STB
STD
STS
STU
STX
STY
SUBA
SuBB
suBD
Swi
SwWi2
SWI3
SYNC
TFR
TSTA
TSTB
TST

EDTASM+ EDITOR COMMANDS

A(SSEMBEES HNSERF)
C(OPY) —+EADY
D(ELETE) M(OVE)
NEHARER
F(IND)

HARDECOPY— QT

R(EPLACE)

WERHFYS
WIRHFES

PHRINvF— FHBYGH

EDTASM+ ASSEMBLER COMMANDS (A)

/A0 ABSOLUTE ORIGIN

T AIN-MEMORY-ASSEMBLY
P PRNTER—

/MO MANUAL ORIGIN

/NL NO LISTING

/NO NO OBJECT
/NS NO SYMBOL TABLE
/SS SHORT SCREEN

WA H—ONERAROGRS

EDTASM+ ZBUG COMMANDS

A(SCIl) DISPLAY
B(YTE) MODE
C(ONTINUE)
D(ISPLAY)

EDHFOR)-

G+

H(ALF) SYMBOLIC
HNRUT) BASE-
L(OAD) ML FILE
M(NEMONIC) MODE
N(UMERIC) MODE

P SAVE ML ON TAPE

S(YMBOLIC DISPLAY)

T DISPLAY BLOCK
T H HARDCOPY BLOCK
U MOVE BLOCK

V (ERIFY) BLOCK
W(ORD) MODE

X—BREAKPOHNT
Y (ANK) BREAKPOINT
F+—EXAMINERPREGEDING

A—EXAPMHNENEXF—

— BRANCH INDIRECT
; FORCE NUMERIC
+ FORCE NUMERIC BYTE
. FORCE FLAGS
/ EXAMINE
SINGLE STEP

GENERAL TOPICS

-GRU-REGHSTFERS—

DATA TO REGISTERS
LOADING AND STORING
ADDITION AND SUBTRACTION
CONDITION CODES
SYMBOLIC ADDRESSING
JUMPS, BRANCHES

RELATIVE BRANCHES
INCREMENTS/DECREMENTS

SUBROUTINES

STACK OPERATIONS
ROTATES, SHIFTS
MULTIPLES

DIVIDES

DECIMAL ARITHMETIC
BASIC INTERFACING
PASSING PARAMETERS
VARPTR USE

ROM SUBROUTINES
OTHER ADDRESSING

COMPLEMENTS
LOGICAL OPERATIONS

MULTIPLE PRECISION GRAPHICS

DATA VALUES SOUND

INDEXING LARGER PROGRAMS
INDEXING WITH XY

SORTING

Chapter 3
Transferring Data to Registers

In this chapter we'll actually start using assembly language. The cpu registers
are like other memory locations in that they can be "loaded” with data values.
We'll find out how here. We'll also discuss how to move data between the
various cpu registers. All in all, not as exciting as a Steven Spielberg movie,
but a close second.

First of all, you might glance back at Chapter 2 to review the register
“architecture,’ a fancy word for describing what registers are available for the
assembly-language programmer and what their chief uses are.

The "general-purpose” cpu registers are the A and B registers. They're used
to manipulate 8 bits of data at a time. Both the A and B registers have equal
status — anything you can do with the A register you can also do with the B
register. The A and B registers are "accumulator” registers. This is a some-
what archaic term that means that these registers are used to accumulate
results of adds, subtracts, and other operations.

Remember that the A and B registers can be grouped together to make up a
16-bit register called the "D” register. When grouped this way, the A register
is the "most significant” or left-hand 8 bits, and the B register is the “least
significant” or right-hand 8 bits, as shown in Figure 3-1.

MOST SIGNIFICANT LEAST SIGNIFICANT
8 BITS 8 BITS
A A
I Y)

s
8 W

Il
T
Il
T

-

T T N | J
T 11 1T 1
A REGISTER B REGISTER

—_ =
—

|
1
l
I

— -

“D" REGISTER

Figure 3-1. D Register

The "D” register can be used for 16-bit arithmetic operations such as adds
and subtracts, but you can’t do as much with the D register as you can with
either the A or B registers.

The remaining registers are not “"general-purpose” registers, but are used for
stack operations (S and U), indexing operations (X and Y), program control
(PC), or setting the "page” address (DP).

Loading Registers

Let's first look at simple “loads” of the A and B accumulators. Look at the
code below. We'd recommend entering each of these sets of code as we discuss
the operations, and we've geared the examples to let you see what's happen-
ing. There's no need to enter the comments after the semicolon, as we've
included them just to explain the operations, although you can if you wish.

25

3 Transferring Data to Registers

Hints and Kinks 3-1
More EDTASM+ Edit Commands

There are a number of other Editor commands that we should cover
here, although they are also in the EDTASM+ manual.

The R(eplace) command works somewhat like Insert, but it replaces
an existing line with a new line. Use it to overwrite existing lines
when entering “source code.’

The D(elete) command deletes a range of lines from the text buffer.
D100:300
for example, deletes lines 100 through 300.

The C(opy) command copies a range of lines to a new location with a
new starting line number and increment.

C1000,100:300,10

for example, copies the range of lines from 100 through 300 to a
location starting with 1000 and with increment 10. The original
block of lines is left unchanged. M(ove) works exactly like C(opy)
except that the original lines are deleted.

F(ind) can be used to find a character string somewhere in the text
buffer. Suppose that you had a label "NEXT" but couldn’t find it in
displaying the buffer. You could use

FNEXT

to search the text buffer for the string. The string may be any
number of characters. If you use F alone, the last defined string will

be used.
00100 * LOAD THE REGISTERS
@92E B6 37 O0118 START LDA #55 LOAD A WITH 55
@938 Cb6 55 00120 LDBE #$55 LOAD B WITH 85
2932 SE @3E8 20130 LDX #1000 LOAD X WITH 1000
0935 10BE 1234 00140 LDY #512346 LOAD Y WITH 4660
2939 1@CE 3Foe 00150 LDS #33F00 LOAD S WITH $3FQ20
993D CE 3000 20160 LDU #$3000 LOAD U WITH $3000
0940 CC O3ES @017@ ENDEX LDD #1000 LOAD A>B WITH 1000
0943 7E 0943 20188 LOOP JMP LOOP LOOP HERE
2000 201950 END

22088 TOTAL ERRORS
ENDEX @940
LOOP 2943
START 092E

Figure 3-2. Load Registers Program

Assemble by entering A/IM and check for errors. If you have a “clean”
assembly, you can execute by doing the following:

26

Transferring Data to Registers 3

*7, (go to ZBUG)
#XLOOP (set breakpoint at LOOP instruction)
#GSTART (execute from START)

If you follow this sequence, you'll see that ZBUG "hits™ the breakpoint after
executing each of the instructions and responds with

#X1L.OOP (setup breakpoint)
#GSTART (execute)

0 BRK @ LOOP

#

What this means is that the 6809 has executed each of the instructions in this
short program and then reached the breakpointed instruction at location
LOOP. THIS INSTRUCTION WAS NOT EXECUTED but control was
turned back to ZBUG.

After you reach the breakpoint, look at the contents of the 6809 registers by
doing an R command in ZBUG. You'll sce

#R

A=37 B=55 DP=00 CC=80 =E

X=03E8 Y=1234 U=3000 S=3F00

PC=094D (PC may be different)
#

Hints and Kinks 3-2
Why the PC Register Varies

The PC register may be a different value onyour system thanitis in
the examples in this book. EDTASM+ "assembles” your program
directly after a text buffer that holds your source code. If your source
code is not exactly equal in length to the examples in this book, the
start of the program may vary. If, for example, you haven't included
comments, the program start will be much lower than the examples
in this book. The PC points to the breakpoint location after the
breakpoint occurs, and this also moves in step with the program
start, as the length of the program is usually fixed.

Hints and Kinks 3-3
What are the Symbols at the
End of the Assembly?

Every time you assemble, EDTASM+ compiles a list of symbols
found in the source code. The symbols are generally “labels” in the
first column of the source code. In a proper assembly, all symbols
must appear somewhere as a label. The symbols are put into a
symbol “table;” along with their corresponding locarion value. The
start of your program might be labeled "START" for example, and

27

3 Transferring Data to Registers

when your program is assembled, the instruction at START might
be at “absolute” location $0990. At the end of the assembly, the
entire symbol table is listed, so that you can see where in memory the
instructions associated with the labels reside. You can delete the
symbol table listing by doing an assembly of the form A/IM/NS,
where the /NS “switch” stands for "No Symbol Table

Each of the 6 registers has been loaded with a data value. Look at the A
register, for example. In the source code line, we had an "LIDA #557
instruction, standing for “Load A with 55 If you look at the A= display, you'll
see 37, which is the hexadecimal equivalent for decimal 55.

What about the B register? We loaded it with a §55. Remember that the "$" is
a special hexadecimal prefix which says that the number for the load is in
hexadecimal in the source code line. Sure enough, if we look at the B display,
we'll see a 55.

Look at the display for X, Y, S, and U. Do they correspond to the values that
we specified in the source lines? Well, we loaded X with 1000 decimal, which
is $3E8 in hexadecimal. We loaded Y with $1234, which is already a hexadec-
imal value and displayed as such. We loaded S with $3F00 and U with $3000,
and they appear to be loaded properly also.

When you ran this program by the G command, the six instructions were
executed in about 20 microseconds (a microsecond is a millionth of a second)
and loaded the A, B, X, Y, S, and U registers with the values shown. Assembly
language is so fast that it’s hard to believe that anything actually happened,
but the ZBUG R command displays the actual values in the 6809 registers
after the program.

By the way, what is the largest number that can be held in 8 bits? In other
words, what is the largest number that can be loaded into an 8-bit general
register? We've loaded the B register with this value, which is a decimal 255,
or a hexadecimal $FF.

Immediate Loads

This type of instruction used an "addressing” mode called “"immediate”
addressing. In his type of addressing, the data for the instruction is contained
in the instruction itself. Look at the assembly listing for the LDA #$XX, for
example.

In this case we wanted to load 55 into the A register. The value of 55 decimal
is (as you've figured out) $37, and if you look in the machine-language data
for the LDA #55,you’ll see a $86 byte, followed by an $37.In fact, all of these
instructions have the "immediate” data to be loaded in their second byte or
second or third bytes. If we're loading a 16-bit register, such as X, we'll see
two bytes of immediate data. Look at the LDX $1000 instruction as an
example. You'll see a $8E byte, followed by $03 and $E8. The $03,8E8 is a
16-bit value of $03ES8, or decimal 1000.

28

Transferring Data to Registers 5

Anytime that you see an LDA, LDB, LDD, LDS, LDU, LDX, or LDY in the
source line, followed by a value in decimal or hexadecimal with aleading “#7
the LD will be an "immediate 8-bit or 16-bit load” that loads data into the
register.

Sharp-eyed “hackers” among you may have noticed that when we break-
pointed, we did not execute the next-to-last instruction of our short program,
the LDD #1000. You can execute this by breakpointing at the last instruction
of the program, the LOOP JMP LOOP. This is an instruction that jumps to
itself, much like a 100 GOTO 100 in BASIC. The sequence for executing this
instruction 1s

#Y (reset all breakpoints)
#XLOOP (setup breakpoint)
#GSTART (exccute)

After the breakpoint is reached, the D register will be loaded with 1000.
What will you see? Since the D register is A and B combined, you'll see A set
to $03 and B set to $E8. You can verify this by doing an R command in ZBUG.

Hints and Kinks 3-4
More On Breakpoints

You can have up to 8 breakpoints in ZBUG. They're numbered 0
through 7 so that you can keep track of where they are. To see which
breakpoints you've used, enter the ID command in ZBUG. You'll get
something like:

#D
0 BRK @ START
1 BRK @ END

To reset breakpoints, use the Y command. The Y command was
created by a British programmer at Microsoft and stands for "“Yank”
Picture the breakpoints being yanked out of the breakpoint table,
and you’ll remember the mnemonic. The Y command alone resets
all breakpoints, but Y with a number resets a specific breakpoint and
leaves the others set. Y3, for example, yanks breakpoint 3 but leaves
the others.

Transferring Data Between CPU Registers

We've seen how to load 8- and 16-bit registers with immediate data, but what
about "moving” data between cpu registers? This is done all the time in
assembly-language programs. Often we want to move data from the A
register into the B register and back again or from the D register into the Y
register or some other combination.

In this case we use the "TFR” instruction. This time we won’t be loading
immediate data, but "transferring” or copying the contents of one register
into another.

29

3 Transferring Data to Registers

If you want to see how this works, delete the source code of the short program
above by doing

#E
[D#:

(back to Editor from ZBUG)
(deletes from beginning to end)

You can now enter this short 6809 source code segment:

R9=5
@927
@929
Q9 p
A9ZE
@ 3z
Q934
B934

20002 TOTAL ERRORS

LAST
LOOP

86 55
Ccé 2o
1F 89
8E 1234
1@8€E @000
1F 1z
1F 21
7E 2936
2000
0925
2936

20100 *LOAD PETWEEN REGISTERS

20110
on1:e
20130
20140
00150
ap1é@
20170
P0180
20190

LAST

LOOP

DA
L.DE
TFR
LDX
LDY
TFR
TFR
JMP
END

#$55
#o
AR
#1234
#Q

XY
DsX
LOOF

IMMEDIATE LOAD OF %55
IMMEDIATE | OAD QOF @
TRANSFER A TO B
IMMEDIATE LOAD QOF 41234
IMMEDTATE LOAD OF @
TRANSFER X TO Y
TRANSFER D TO Y

LLOOP HERE

Figure 3-3. Load Between Registers Program

This program shows you how the registers can transfer data to each other by
the TFR instruction. Enter it, edit it until it assembles properly, breakpoint at
LOOP, execute by GLAST, and then look at the register contents with the

ZBUG R command.

Here's what the program did: The A register was first loaded with hexa-
decimal 55. The B register was then cleared by loading it with 0. Next,a TFR
transferred the contents of A to B. A and B both contain $55 at this point.
Next, the X register was loaded with hexadecimal 1234. Next, the Y register
was loaded with 0. The TFR instruction then transferred the contents of X to
Y. Both X and Y contain $1234 at this point. The last instruction then
transfers the contents of D (A and B) to X. Since A and B each hold $55, the

result in X is $5555.

The A or B register can be loaded by the other accumulator (or DP) simply by
using the TFR instruction. In this instruction, the "source” register is first,
followed by the “destination’as in TFR A,B, which loads B with the contents
of A. The same thing holds true for 16-bit registers. TFR X,Y transfers the
contents of X into Y. An important point: You can’t load a 16-bit register
with an 8-bit register and vice versa. You couldn't say

TFR

AY

You'd get a REGISTER ERROR message on assembly.

The EXG Instruction

The TFR instruction copies the contents of one cpu register to another cpu
register. The EXG, however, exchanges the contents of one cpu register with

another.

30

EXG

AB

Transferring Data to Registers 3

for example, exchanges A with B, and
EXG X)Y
exchanges X with Y.

A Special Clear Instruction

There's a special instruction to load a 0 data value into A or B, the CLRA or
CLRB instructions. As you might guess, “CLR" stands for “clear and the
instructions are the same as

LDA #0 (use CLRA instead)
LDB #0 (use CLRB instead)

As "good programming practice;” you should use CLRA and CLRB in place
of the LDA or LDB, as it is a I-byte instruction and executes more rapidly.

Hints and Kinks 3-5
Is It Important to Use Efficient Instructions?

It depends. Your programs might run 0.001% faster by using
CLRAs instead of LDA #0s. However, if you try to use the most
efficient instructions for every type of instruction, your programs
might run 209% faster in some cases, or even more. There'll come a
time when you want to squeeze every last bit of speed out of your
programs, and good assembly-language habits learned early will pay
off. On the other side of the coin, assembly language is so much
faster than BASIC you can be very “sloppy” and still get by nicely.

Hints and Kinks 3-6
Stopping the Assembly
You can stop the assembly listing in mid assembly by pressing the

SHIFT and @ keys at the same time. Continue the listing by pressing
any key.

Inherent Addressing

Instructions such as CLRA and CLRB assemble as a single byte and always

have the same format. The "Addressing mode” for these simple instructions

is called "Inherent addressing;” as the instructions are “self-contained” and

don’t require operands. See Appendix Il for other instructions of this type.
Review

To recap what we've learned in this chapter:

® You can load any 6809 register except the DP register by an “immediate”
load

31

3 Transferring Data to Registers

® You can load A with B or B with A or one 16-bit register with another
16-bit register by a TFR of the form TFR S D, where S is “"source” register,
and "D” is “destination” register

® The CLRA or CLRB clears the A or B accumulators

® Inherent addressing is used for instructions that are fixed format and do
not require operands

For Further Study

LD 8-bit and 16-bit immediate instructions (see Appendix II)
TFR instruction
CLRA, CLRB instructions

32

KEY CHART — CHAPTER 4

INSTRUCTIONS EDTASM+ EDITOR COMMANDS
- ABX LBHS -6+A8 +P5 ROL “ArSSEMBLES HNSERT RIEPLCACE)]
ADCA BITA CLR “tot- RORA -6(6R¥%— = EAD}— ~“FHARDECOPY—
ADCB BITB CMPA -tB% RORB -BffHtEF— —MOVET VIERHY—
ADDA BLE CMPB +HB¥ ROR B+ NIMBER) WRHFE-
ADDB LBLE CMPD LEAS RTI ~FHND— PRINF ZBUG—

ADDD BLO CMPS LEAU RTS -HARBEOPY -OrttFr
ANDA LBLO CMPU LEAX SBCA

ANDB BLS CMPX LEAY SBCB

ANDCC LBLS CMPY LSLA SEX EDTASM+ ASSEMBLER COMMANDS (A)

A gL P /AO ABSOLUTE ORIGIN /NO NO OBJECT

ASLB LBLT COMB LSL ST =~ TMAIN-MEMORYASSEMBLY- ANSNO-SXMBOLTABLE-
R L INE—PRINTFER— /SS SHORT SCREEN

ASL BMI COM LSRA STD /MO MANUAL ORIGIN WA T~ ON—ERR GRS~

ASRA LBMI CWAI LSRB STS
ASRB BNE DAA LSR STU
ASR LBNE DECA MUL STX

/NL NO LISTING

BCC BPL DECB NEGA STY EDTASM+ ZBUG COMMANDS

LBCC LBPL DEC NEGRB SUBA A(SCIIl) DISPLAY T DISPLAY BLOCK

BCS BRA EORA NEG SUBB -BYFEMODE T H HARDCOPY BLOCK

LBCS LBRA EORB NOP suBD C(ONTINUE) U MOVE BLOCK

BEQ BRN £x6- ORA SWiI BHSREAYS V (ERIFY) BLOCK

LBEQ LBRN INCA ORB SWi2 -EBHOR}- W{ORD) MODE

BGE BSR INCB ORCC SwI3 -&{54 H—BREAKFOHNF-

LBGE LBSR INC PSHS SYNC H(ALF) SYMBOLIC F—ANKF—BREAKPOINTF—

BGT BVC JMP PSHU TFR HNRUT) BASE +—EXAMHNE-PRECEDING—

LBGT LBVC JSR PULS TSTA L(OAD) ML FILE AN E NN

BHI BVS LA~ PULU TSTB M(NEMONIC) MODE —~ BRANCH INDIRECT

LBHI LBVS 4DB- ROLA TST N(UMERIC) MODE . FORCE NUMERIC

BHS SLRA- +DBb ROLB BLOUFRYF-BASE- + FORCE NUMERIC,BYTE
P SAVE ML ON TAPE - FORCE FLAGS
REGISFER-BHSREAY— S—EXAMINE

ADDRESSING MODES

S(YMBOLIC DISPLAY) ., SINGLE STEP

- DIRECT

EXTENDED GENERAL TOPICS

HAEDHATE— CRU-REGISTERS- SUBROUTINES

SIMPLE INDEXED -DATA-FOREGISTERS- STACK OPERATIONS

RELATIVE LOADING AND STORING ROTATES, SHIFTS

DISPLACEMENT INDEXED ADDITION AND SUBTRACTION MULTIPLES

AUTO INCREMENT/DECREMENT CONDITION CODES DIVIDES

INDIRECT SYMBOLIC ADDRESSING DECIMAL ARITHMETIC

SOPHISTICATED JUMPS, BRANCHES BASIC INTERFACING
RELATIVE BRANCHES PASSING PARAMETERS
INCREMENTS/DECREMENTS VARPTR USE

PSEUDO OPS COMPLEMENTS ROM SUBROUTINES

EQU ORG LOGICAL OPERATIONS OTHER ADDRESSING

FCB RMB MULTIPLE PRECISION GRAPHICS

FCC SET DATA VALUES SOUND

FDB SETDP INDEXING LARGER PROGRAMS
INDEXING WITH X.Y
SORTING

Bold Type = Present Chapter
Regular Type - Future Chapters

dtalic Type.= Past Chapters
33

34

Chapter 4
Loading and Storing Data
Between Registers and Memory

In this chapter we'll see how data can be loaded into cpu registers from
memory. This operation is called a load just as it was in the case of immediate
loads in the last chapter. We'll also see how data can be transferred froma cpu
register to memory. This operation is called a store. There are many address-
ing modes that can be used with loads and stores, and we’ll discuss the
simpler ones here.

Extended Addressing

The simplest way of loading a register from memory or storing a register into
memory is by extended addressing. In this addressing mode the address of
the memory location involved is specified in the instruction itself. Look at the
following code to see what we mean:

3120 *L OADS AND STORFS PY EXTENDED ADDRESSING

2715 86 2D P011@ START L DA #45 LOAD A WITH 45
@917 87 3eoe D120 STA $3000 STORE IN $3202
B?1A Fé 3000 22130 L.DE $.3000 LOAD B WITH ($3000)
291D BE @3E8 20140 LDX #1000 LOAD X WITH 1020
290 BF Jen1 20150 STX +3001 S10RE IN 43001
923 10PE 3001 20160 LDY $30@1 LOAD Y WITH ($3001)
w27 7€ @rz7 A0170 L.OOP JMP Loop LOOP HERE

200 on182 END

20OBd TOTAL. ERRORS

LOOP 097
START @15

Figure 4-1. Loads and Stores, Extended Addressing Program

Use the Edit mode of EDTASM+ to enter the source code above. After
entering, you can assemble with A/IM. Check for errors, and if there are
none, go to ZBUG. The dialogue will go something like this:

*] (Insert mode in EDTASM+)
(enter source code)

*A/IM (Assemble source code)

*Z, (go to ZBUG)

(ZBUG prompt)

You're now ready to execute the program. Breakpoint at location LOOP and
do an execute from location START. You'll see an almost instantaneous
execution as the breakpoint is reached. The sequence will look like this:

#XLOOP (breakpoint at location LOOP)

#GSTART (execute from location START)
0 BRK @ LOOP

#

35

4St0ring Data to Memory

Let’s see what the program on the previous page did. The LDA #45 instruction
uses immediate addressing, as we discussed last chapter. It loads a value of
decimal 45 into the A register.

The STA $3000 is a "store” that takes the contents of the A register and
stores it into a memory location, in this case the memory location at $3000.
Since the contents of A was decimal 45, a 45 is stored into memory location
$3000.

To see that this is true, you can examine location $3000 by:

#B (set Byte mode)
#3000/ 2D

The next instruction, LDB $3000, loads the B register not with immediate
data, but with the contents of memory location $3000. Since we've just stored
45 there, a 45 will be loaded into the B register. You can see that result by
using the ZBUG R command to look at the registers.

The LDX #1000 instruction is an immediate load of decimal 1000 into the X
register. The value of 1000 decimal inbinary is $03, $E8 in hex, and you'll see
this value in X if you use the R command.

The STX $3001 stores the contents of X into memory locations $3001 and
$3002. Note that this store is a two-byte store of the memory location
specified, plus the next location, in this case $3001 and $3002. If you examine
$3001 and $3002 you'll see a $03 in $3001 and $E8 in $3002.

#3001/ 03 (DOWN ARROW)
3001/ 08

The next instruction, LDDY $3001, loads the contents of $3001 and $3002 into
the Y register. Again, this s a 16-bit load because the Y register is 16 bits, and
it takes the contents of the memory address specified plus the contents of the
next memory address for the load. Since we just stored $03, $E8 into $3001
and $3002, the same two values are loaded into Y.

Loads and Stores between cpu registers and memory, then, are really pretty
simple. They simply transfer 8 or 16 bits of data between a cpu register and
memory. If the register involved is 8 bits, 8 bits are transferred; if the register
involved is 16 bits, 16 bits are transferred. The data is copied and the original
data in the register or memory location(s) is not destroyed.

There are loads and stores for all cpu registers except for the Direct Page
(DP) and Program Counter (PC):

Loads:
LDA, LDB, LDD, LDS, LDU, LDX, LDY

Stores:
STA, STB, STD, STS, STU, STX, STY

Note that the LDID and STD operate with DD, the 16-bit register made up of A
36

Storing Data to Memory 4

(most significant 8 bits) and B (least significant 8 bits).

Now let’s take a look at the instruction format itself. If you assemble the code
above and look at the STA $3000, you'll see a $B7 byte followed by $30 and
$00. The $B7 byte is the "opcode” of the instruction. It marks the instruction
as an “STA” The second and third bytes of the instruction are the memory
address value to be used in the STA, in this case $3000. As there are two bytes,
memory address values of $0000 through $FFFF can be used, although some
of these are ROM locations.

The data in the second and third bytes was not "immediate” data as in the
case of the immediate instructions, but an address value. This type of
addressing is called “extended addressing” as it allows loads or stores or other
operations using any of the 65,536 bytes of memory in the 6809 addressing
range.

Hints and Kinks 4-1
Instruction Formats

The standard instruction format is one or two bytes of “opcode”
followed by other bytes relating to operand address in memory,
immediate value, or other “argument”

The opcode term stands for “operation code!” It is a literal code value
that the 6809 decodes to determine what type of instruction is being
executed, how many operands will be involved, and other specifics
pertaining to the instruction.

The 6809 is "optimized” in regard to instruction length. The more
frequently an instruction is used, the shorter it is. This means that
more frequently used instructions, such as LDA, will have one byte
of opcode, while less frequently used instructions, such as LDY, will
have 2 opcode bytes.

Look at the LDY $3001 instruction. In this case there’s a $10 followed by $BE
and then a byte of $30 and one of $01. The first two bytes in this case are the
“opcode.” marking the instruction as an .DY, and the third and fourth bytes
are the address for the Load.

Anytime that the immediate # prefix is not used in the operands column of
the source code, the load or store will take the operand from memory
rather than from an immediate value in the instruction. This “extended
addressing” is used in many different types of instructions.

Simple Indexed Addressing

Now let's look at another type of addressing, called “indexed addressing.”
We'll cover a simple case of it here, and expand upon this addressing mode in
another chapter.

37

4Storing Data to Memory

A rudimentary form of indexed addressing uses the X and Y registers. X and
Y were designed for this purpose and were made 16 bits "wide” so that they
could hold memory address values of $0000 through $FFFF.

In the simplest.case of indexed addressing, X or Y “points to” a memory
address and acts as the address for the instruction. Suppose that we had the
following code:

AQ10Q ¥ OADS AND STORES USING SIMPLE INDE XING

@a70A BE 3000 PO11Q START [BE24 #4.3000 POINT 1O %3000
292D 108E 3001 L2l e LDy #33001 POINT To $3001
2911 86 D 20130 LDA #45 ILOAD A WITH 45
2913 Cé& or. 0140 I DE #11 LOAD B WITH 11
Q915 A7 84 o150 STA s X GIORE A INTO $3000
@917 E7 Ab 201460 HTE Y STORE B INTO $30011
o719 7E 2219 20170 LooP JMP LOoOP L.OoP HERE
ralrilralt] o182 END

0VOR@ TOTAL ERRORS
LOOF 0919
START @9@A
Figure 4-2. Loads and Stores, Simple Indexing Program

The LDX #3000 loads the X register with an immediate value of $3000. This
immediate value is actually a memory address to be used in an “indexing”
operation. The Y register is then loaded with an immediate value of $3001.
Now A and B are loaded with 45 decimal and 11 decimal, respectively.

The next two instructions perform “indexed” operations. The STA ,X stores
the contents of A into the memory location pointed to by the contents of X. X
contains a $3000, so the instruction is the same as

STA $3000

The STB Y stores the contents of B into the memory location pointed to by
the Y register in a second indexing operation. Here the instruction is the
same as

STB $3001
as Y contained a $3001.

Why not just use an “extended addressing” STA and STB instead of going to
all that trouble? 1t’s true that the X and Y registers have to be loaded with a
"pointer value;” and that in this case the indexed operations take more
instructions than just doing an STA or STB. However, the pointer value in X
and Y can be adjusted quite easily once it is initialized. X and Y can be used to
point to a block of data to be processed and can then be adjusted to make the
processing operation more efficient than doing "extended addressing” oper-
ations. We'll discuss more about indexed operations in later chapters. For
now, however, just remember that anytime you see the format

X or,Y

it means "use the contents of X and Y as a pointer value to a memory
location.”

38

Storing Data to Memory 4

Hints and Kinks 4-2
Using Other Registers as Index Registers

If you promise not to tell this to any other reader, we'll jump the gun
here and tell you that the 6809 is so powerful as far as addressing
modes that not only can X and Y be used as index registers, but so
can U and S. The 6800 predecessor to the 6809 had only one index
register, X. The 6809 adds three more, Y, U,andS. The X and Y are
registers are typically used as index registers, while S and U are used
typically used as "stack pointers.” More on all these topics in later
chapters.

Direct Page Addressing

Direct Page addressing, as you might have guessed, uses the DP register.
When the Color Computer and 6809 are powered up, this DP is automatically
set to $00. The DP register cannot be loaded directly, but can be loaded by the
TFR instruction we discussed in the last chapter. To load the DP register with
$12, for example, you'd do a:

LDA #$12 LOAD A WITH $12
TFR A,DP LOAD DP WITH A ($12)

Try this experiment: Enter the following program into EDTASM+

START LDA $50 LOAD A WITH LOCATION $0050
END

Now assemble and look at the machine-language bytes assembled for the
instruction. What did you see?

You should have seen a $96 byte followed by a $50 byte. Wait a minute,
though! Shouldn’t this have been an “extended addressing” instruction?. It
wasn't an immediate load, but a load of memory address $50 into A.

In fact, this instruction was assembled as a "direct addressing” type of
instruction. The direct addressing mode takes the current contents of the DP
register as the high-order 8 bits of the address and uses the operand in the
instruction as the low-order 8 bits. In this case, since DP=0, the total address
would be $0050. The resulting address, or “effective address” would be used
in the load just as if (in this case) the instruction would have been an
“extended addressing” type.

The direct mode saves one byte over the extended addressing type as it
requires only one byte of the address in the instruction. The remaining byte is
contained in the DP register. Figure 4-3 shows the process.

39

4Storing Data to Memory

CASE 1: LDA $50 ASSEMBLES AS $96 |$50 |

op
TIVE
(Cooo00000 | ["ot010000 | SEEECNEE s
$00 $50

CASE 2: LDA $1250 ASSEMBLES AS $96] $50]

pP
EFFECTIVE
[ooo10010 | | ot010000 | St o e ase
s12 $50

Figure 4-3. Direct Addressing

In this addressing mode DP always points to the beginning of a 256-byte
page. If DP is never loaded, it remains pointing to “page 00" as it contains $00.
If DP is loaded with any new value, then it points to the beginning of a
256-byte page. Suppose DP were loaded with $12 by the sequence above. It
would then point to $1200 and instructions that referenced locations $1200
through $12FF could use the 2-byte direct address mode in place of the
extended addressing mode (see Figure 4-3).

Not only does the direct addressing mode save one byte over extended, but
it's about 2077 faster besides.

Now try another experiment. Load the DP register with $30, so that instruc-
tions that referenced locations in the $3000 through $30FF area could use
direct addressing:

START LDA #$30 LOAD A WITH $30
TFR A,DP LOAD DP WITH $30
LDA $3001 LOAD A WITH ($3001)
END

By rights the LDA $3001 should be assembled as a direct addressing type of
instruction with an “opcode” byte of $96 and a “low-order” address byte of
$01. When we assemble, though, we see this for LDA:

B6 3001
indicating that the instruction actually assembled as an “extended address-
ing” LDA! Why?

The reason is that you knew that the DP register had $30 in it, and T knew
that the DP register has $30 in it, but the assembler in EDTASM+ did not! It
must be told via a “pseudo-op;” a command to the assembler that is not an
instruction. The SETDP pseudo-op lets the assembler in on the contents
of DP:

40

Storing Data to Memory 4

START LDA #830 LOAD A WITH $30
TFR ADP LOAD DP WITH $30
SETDP $30 SET ASSEMBLER
LDA $3001 LOAD A WITH ($3001)
END

Assembling the code above results in
96 01
for the LDA $3001, which uses the direct addressing mode.

The SETDP operand can be any number from $00 through $FF to match
what s in the DP. (In special cases, it does not have to match the DP, if the
program is to be relocated, but we'll save that discussion for another chapter.)

There are two special “operators” that can also be used to affect the direct
addressing mode, the less than sign (<) and greater than sign (>).

The less than sign can be used in an operand such as:
LDA <$01
to force the assembler to assemble the instruction as a direct addressing type.

The greater than sign can be used for the opposite condition, to force
extended addressing:

LDA >$3001

In the latter case, even though the DP register holds $30, the LDA $3001 will
assemble with “extended addressing”

Hints and Kinks 4-3
More on Pages

The 6800 predecessor to the 6809 used locations $00 through $FF,
the first 256 bytes of RAM as "page 0. There was no DP register,
and “direct addressing” could only be used for page 0. The 6809 adds
the DP so that any of 256 pages can be used, by loading DP with $00
through $FF. One of the games on upgrading any microprocessor is
to try to keep the new microprocessor "downwards compatible”
with the previous version, to keep the industrial customers happy.
6809 instructions are not compatible with the 6800 on a “machine-
language code” level, but the 6800 source code will run (more or
less) on some 6809 assemblers.

When Should You Use Direct
and When Extended Addressing?

You could go along very nicely and not have to worry about direct versus
extended addressing. About the only effect you would see was when you tried

41

4 Storing Data to Memory

to use operands from the first 256 locations — $00 through $FF. These
instructions would always assemble as direct addressing types, as the DP
register would be set to $00, and the assembler in EDTASM+ would automat-
ically impose direct addressing. They wouldn't hurt your program one bit.

If you want to flex your programming muscles, however, you might try
setting the DP register to a “"page’ that you access frequently, one which
holds many “variables” or “constants, along with using the SETDP to
inform EDTASM+ to which page DP was set. Any instruction that refer-
enced those 256 locations would then be assembled as a direct addressing
type.

If this concept bothers you, just ignore it for the time being and come back to
it at a later time. It won’t hurt your programs!

Hints and Kinks 4-4
ZBUG < and > Signs

You may have noticed the less than and greater than signs in ZBUG
examination of memory locations. In the Mnemonic mode (#M),
where the instruction mnemonic is displayed, you'll see a less than if
the instruction uses direct addressing and a greater than if the
instruction uses extended addressing. An example: Assembling

START LDA $0
LDB $3000
and then going to ZBUG to examine in Mnemonic mode displays
*Z
#START/ LDA <0 (indicates direct addressing)
START+2/ LDB >3000 (indicates extended addr)

Review
To recap the material in this chapter:

e Extended addressing allows the programmer to address any of the 65,536
memory addresses available for memory; the address is held in the instruc-
tion itself as a 2-byte number

e Extended addressing uses an 8- or 16-bit operand from memory to per-
form the instruction operation

e Ifa 16-bit operand is used, the extended memory address points to the first
byte of the operand

® Loads and stores transfer 8 or 16 bits of data between a cpu register and
memory

42

Storing Data to Memory 4

Simple indexed addressing uses the X or Y index register as a “pointer”
register to point to data in memory

The format of simple indexing is ", X" or “,Y" used as the operand of the
instruction

Direct addressing uses the contents of the DP register as the most signifi-
cant 8 bits of the memory address; from that point on, it is identical to
extended addressing

The direct addressing mode saves one byte over the comparable extended
addressing type and is also faster

The EDTASM+ assembler automatically imposes direct addressing if an
instruction references an operand in the current "Direct Page”

The assembler must be informed of the current DP contents by a SETDP
“pseudo-op” with an operand value of the DP contents

The <and > operators are used to force direct and extended addressing,
respectively

It's not strictly necessary to worry about setting the DP, as it is set to $00 on
power up or reset

For Further Study

TFR instruction for loading DP (see Appendix 11)
SETDP pseudo-op (EDTASM+ manual)

43

KEY CHART — CHAPTER 5

INSTRUCTIONS

ABX LBHS -€tRB—tB5-

ADCA BITA CLR +b4-
ADCB BITB CMPA tBX
ADDA BLE CMPB —+HB¥
ADDB LBLE CMPD LEAS
ADDD BLO CMPS LEAU
ANDA LBLO CMPU LEAX
ANDB BLS CMPX LEAY
ANDCC LBLS CMPY LSLA
ASLA BLT COMA LSLB
ASLB LBLT COMB LSL

ASL BMI COM LSRA
ASRA LBMI CWAI LSRB

ASRB BNE DAA LSR

ASR LBNE DECA MUL
BCC BPL DECB NEGA
LBCC LBPL DEC NEGB
BCS BRA EORA NEG
LBCS LBRA EORB NOP
BEQ BRN -+X¥6— ORA
LBEQ LBRN INCA ORB
BGE BSR INCB ORCC
LBGE LBSR INC PSHS
BGT BvVC JMP PSHU
LBGT LBVC JSR PULS
BHI BVS tH6A— PULU
LBHI LBVS —+B&- ROLA

BHS —CtHRA—+B6H— ROLB

ADDRESSING MODES

AHAMEDIATE
SHARLE ANDEX -
RELATIVE
DISPLACEMENT INDEXED
AUTO INCREMENT/DECREMENT
INDIRECT
SOPHISTICATED

PSEUDO OPS
EQU ORG
FCB RMB
FCC SET
FDB ~SEFOR—

Boid Type = Present Chapter
Regular Type = Future Chapters
HalicType. = Past Chapters

44

ROL
RORA
RORB
ROR
RTI
RTS
SBCA
SBCB
SEX
STA
STB
STD
STS
STU
STX
STY
SuBA
SuBB
SuUBD
SWI
SWI2
SWI3
SYNC
TFR
TSTA
TSTB
TST

EDTASM+ EDITOR COMMANDS
ASSEMBEES- HMNSERT- RHEREAGE)

SR LHBADS

BIFEEFEF MOV WHEREFY
FBHF NUMBER) WYRAEES
FHNDF PRINF HBUHGR

EDTASM+ ASSEMBLER COMMANDS (A)

/A0 ABSOLUTE ORIGIN

/NO NO OBJECT

PN RNFER—
/MO MANUAL ORIGIN
/NL NO LISTING

/SS SHORT SCREEN
AT ON—ERRORS-

EDTASM+ ZBUG COMMANDS

A(SCH) DISPLAY

C(ONTINUE)

LDUSRLAY)
OGRS

G167
H(ALF) SYMBOLIC

HAPHTFBASE-
L(OAD) ML FILE

M(NEMONIC) MODE
N(UMERIC) MODE

BfOHFRUF-BASE
P SAVE ML ON TAPE

S(YMBOLIC DISPLAY)

T DISPLAY BLOCK
T H HARDCOPY BLOCK
U MOVE BLOCK
V (ERIFY) BLOCK
W(ORD) MODE
H—BREAKRON—
—Y—AANK)—BREAKRON—
—EXAMINERREGEDING-
~—EXAMINENEXT-
— BRANCH INDIRECT
; FORCE NUMERIC
+ FORCE NUMERIC,BYTE
. FORCE FLAGS
A—EXAMINE

SINGLE STEP

GENERAL TOPICS

CRUREGISTERS
-BAFAFOREGISTERS-

+OABING-AND-STORNG-
ADDITION AND SUBTRACTION

CONDITION CODES
SYMBOLIC ADDRESSING
JUMPS, BRANCHES
RELATIVE BRANCHES

INCREMENTS/DECREMENTS

COMPLEMENTS
LOGICAL OPERATIONS
MULTIPLE PRECISION
DATA VALUES
INDEXING

INDEXING WITH XY
SORTING

SUBROUTINES

STACK OPERATIONS
ROTATES, SHIFTS
MULTIPLES

DIVIDES

DECIMAL ARITHMETIC
BASIC INTERFACING
PASSING PARAMETERS
VARPTR USE

ROM SUBROUTINES
OTHER ADDRESSING
GRAPHICS

SOUND

LARGER PROGRAMS

Chapter 5
Addition and Subtraction

In this lesson we'll discuss actual arithmetic in the 6809 — additions and
subtractions. These basic operations are the cornerstone of 6809 assembly-
language programming, and we'll be discussing how we can do rudimentary
adds and subtracts. We'll also look at the ancient Egyptian art of using “two's
complement” numbers. (Well, ok, maybe it doesn’t go back 4000 years, but I
know for certain its been in use since February.)

Eight-Bit Adds

The 6809 has one basic add: An 8-bit operand from memory is added to the
contents of the A or B accumulators. The result is then put back into the A or
B accumulator. Let’s see how this works. Look at the source code below, or use
the existing source code from the Lesson File:

22100 *&-RIT ADDS

@70D 86 b4 28110 START L.DA #100 1000 TO A
090F BR7 3000 o210 STA 3000 STORE IN RAM $3000
8912 Cé 96 22130 LDe #150 150 TO B
0914 FB 3000 80140 ADDE $+3000 ADD ($3000) AND B
@917 F7 3000 20150 STR +3000 SAVE RESULT
R91A 86 25 22162 LDA #3137 37 TO A
@71C BB 25 o172 ADDA #37 ADD 37 TO A
091E B7 3001 20180 STA +3001 SAVE REGULT
2921 7E Rl 28190 LOOP JMP LLOOP LOOP HERE
B0 00200 END

20000 TOTAL ERRORS

LOOP 921
START 27@D

Figure 5-1. Eight-Bit Adds Program

Try this sequence yourself. Enter the code above except for the optional
comments. Assemble the code to get an error-free assembly by A/IM.

Go to ZBUG, breakpoint at "LOOP,” and execute from "START.

Here’s what should happen on execution: The first LDA loads the A register
with 100. This value is then stored in RAM location $3000. Next, the B
register is loaded with 150. Now an ADDB is done with an operand of $3000.
This ADDB will add the contents of the B register with the contents of
location $3000. Since $3000 contained 100, we're adding 100 to 150 in B. The
result of the add is now put into the B register. The STB then stores the result
into location $3000.

The second portion of the program works like this: The A register is first
loaded with 37 decimal. An ADDA now loads the immediate value of 37 to
the A register. The result of 37+37 is put back into the A register. Finally, the
result is stored into location $3001.

When you reach the breakpoint at LOOP, do a
#R
45

5 Addition and Subtraction

to see the contents of the registers. You should see a hex $FA in B, which is
250, and a hex $4A in A, which is 74. Now examine RAM locations $3000
and $3001 by a slash examination. You should see a $FA in $3000 and a $4A
in $3001.

Hints and Kinks 5-1
The T Examination Mode
The T examination mode in ZBUG can be used in place of examin-

ing consecutive locations by slash and DOWN ARROW. To use T in
the above example, enter

#T3000 3001

The locations from $3000 through $3001 will be displayed. T will
display any block of locations you specify. The bad news is that each
will be displayed on one line of the screen, so you'll only be able to see
the last 16 at any time unless you're an extremely fast reader.

The TH command works just like T except that it prints the
locations on the system line printer.

TH3000 3100

will print the 257 locations from $3000 through $3100 on the
printer.

In the program above, you can see two of the types of addressing modes that
we can use with 8-bit adds.

The first is extended (the ADDB $3000). We could also use direct addressing
if we had set up the DP register properly. Look at the object code to see the
direct address; you'll see a $FB opcode byte followed by $30, followed by $00.

The second addressing mode used with A is immediate — the ADDA #37, for
example. You can see the operand for the add in the ADDA #37 instruction.
You'll see a $8B opcode byte followed by a $25 in the second byte.

These addressing modes — direct page, extended, and immediate, are typical
for all instructions that use the A register. The same addressing modes would
be available for a subtract, an OR operation, or an increment of A. As each
addressing mode counts for a separate instruction type, you can see where
some of the many separate instructions of the 6809 come from. Many
instructions are just the same instruction with a different addressing mode!

Sixteen-Bit Adds

All 8-bit adds use the A or B registers. What would you expect 16-bit adds to
use? Correct, the D register, which is a "16-bit” accumulator made up from A
(most significant, or left half) and B (least significant or right half).

46

Addition and Subtraction 5

To see how the D register is used to add two 16-bit numbers, look at the
source lines below:

PB100 * 146-BIT ADDS USING D

@959 CC Q3e8 20110 NEXT LDD #1000 1000 DECIMAL

@95C FD 3000 22120 STD $3000 STORE

@95F CC POFA 20130 L.DD #250 250 DECIMAL

0962 FD 30az 00140 STD $3002 STORE

@965 CC A3E8 20150 LDD #1000 10@@ DECIMAL

0968 F3 3000 201460 ADDD $3000 ADD ($30@0) AND D
@968 FD 3000 00170 STD +3000 STORE BACK IN $3000
BILE FC 300z 20180 LDD $3002 LOAD ($3002)

2971 C3 2064 20190 ADDD #100 ADD 100 DECIMAL
@974 FD Joaz .l] STD +300% STORE BACK IN $30207
@977 7E @377 22210 LOOP JMP LOOP LOOP HERE

o002 20220 END
Q0000 TOTAL ERRORS

LOOP 0977
NEXT 0959

Figure 5-2. Sixteen-Bit Adds Using D Program

Assemble as before, breakpoint at LOOP, execute from NEXT, and then look
at the register contents and locations $3000 through $3003.

Here's what the program above will do: The D register was first loaded with
decimal 1000. This loads the A register with $03 and the B register with $E8.
The D register is then stored in RAM location $3000. The STD here stores A
in location $3000 and B in $3001.

Next, the D register is loaded with decimal 250 (A is loaded with 0 and B with
$FA). This value is then stored in RAM locations $3002 ($00) and $3003
($FA).

Next, the D register is loaded with decimal 1000. An ADD then adds the
contents of RAM location $3000 (1000 decimal) to the contents of the D
register (1000 decimal). The result is put into D. The result is 2000, with $07
going to A and $D0 going to B. This result is then stored back into $3000.

The next LDD loads the D register with the contents of $3002 (250 decimal)
and then does an ADDD #100. This is an add that uses immediate addressing
to add decimal 100 to D. The result of 350 is then stored in D by the ADDD,
with $01 going to A and $5E going to B. The result is also stored back into
location $3002 and $3003.

Look at the registers and memory using ZBUG to verify that all of these
actions occurred. There should be a 8015E in D for the last add, and also in
$3002, $3003. Locations $3000 and $3001 should hold $07D0.

Of course we went through a lot of work here just to give you some more
experience in loads and stores along with the adds without accomplishing
much. You're going to have to suffer through a few more trivial examples,
and then we’ll start doing some interesting things.

How did these 16-bit adds differ from the 8-bit adds? For one thing, of course,
twice the “width” of data was added, which means that sums up to 65,535 can

47

5 Addition and Subtraction

be handled, rather than only 0 through 255. For another thing, the 16-bit
adds are "register hogs.” The 16-bit add makes use of the D register, which is
both A and B, which means that we can't have anything important in either
register.

Hints and Kinks 5-2
Working With 16-Bit Numbers

The second part of Appendix IV shows a procedure for converting
16-bit numbers. It depends upon the fact that the most significant
byte of a 16-bit number is really an 8-bit number times 256. Take the
16-bit number 1010111011000000. This number is really
10101110%256+11000000 (174%256+192) as each bit position is a
power of 2 and the eighth bit position is 2 to the 8th or 256. You can
do two converts, one for each byte of the number and still use the
tables in Appendix IV as described in the procedure.

Subtracts

The 8-bit subtract is very much like an 8-bit add. It operates on data in the A
or B registers. In the subtract, an 8-bit operand from memory is subtracted
from the contents of the A or B register, with the result going into the A or B
register — it’s identical to the ADD except for the basic operation.

To show you how the subtract works, look at the following code.

P2120 * B~ AND 16-BIT SURTRACTS

@237 86 64 22110 THIRD LDA #100 1@@ DECIMAL
@739 C6 FA 2012a LDE #250 Z5@ DECIMAL
a93e 8@ oA Q0130 suUBA #10 1@ DECIMAL.
Q93D B7 3a0a 22148 STA 43000 STORE RESULT
2940 FO 3000 20150 suBg $3000 SUBTRACT ($300@)
43 F7 3001 Q160 sTR $3001 STORE RESULT
2946 CC QOFA 20170 L.DD #250 25@ DECIMAL
749 83 @3EB 20180 sSuUBD #1000 SUBTRACT
@74C FD 300z 20190 STD 300 STORE RESULT
@74F 7E B74F @aDzoR L.OoOP JMP LOOP L OOF HERE
@000 vaz1a END

Q@en TOTAL ERRORS

LOOP QF4F
THIRD 2937

Figure 5-3. Eight and Sixteen Bit Subtracts Program

You can see immediately that the subtract can use either A, B,or D, and it can
also use direct, extended, or immediate addressing.

The A register is first loaded with decimal 100 and the B register with
decimal 250. Next, an SUBA #10 is done, which subtracts the immediate
value of decimal 10 from A. The result of decimal 90 is stored into A by the
SUBA and into location $3000 by the following STA.

Next, a SUBB with extended addressing is done. This subtracts the value of
48

Addition and Subtraction 5

90 in $3000 from the contents of B (250) and puts the result of 160 into B. An
STB also stores it in RAM location $3001.

The third subtract, an SUBD, subtracts an immediate value of 1000 decimal
from the contents of D, which is 250 decimal. The result of -750 goes back
into D, and is also stored into locations. $3002 and $3003.

Use the R and T ZBUG commands to examine the registers and RAM
locations $3000 through $3003 for the correct results.

If you're paying strict attention here, you've noticed a confusing situation.
What about that last subtract? What is a negative value of -750? The result
looked strange.

To answer that question we're going to have to look at number representa-
tion called “two’s complement.”

Hints and Kinks 5-3
Bit Numbering

Bit positions in both cpu registers and memory locations are num-
bered from right to left starting with 0, as shown below. The bit
number corresponds to the power of 2 for that bit position. The
leftmost bit position number in an 8-bit register is 7, for 2 to the 7th,
while the leftmost bit position number in a 16-bit register is 15, for 2
to the 15th.
BIT POSITION
74645444342, 1,0

|
| T T T
LJ' .| eBiTREGISTER

l "
| 1 T

i l
! I

15,1413 ,12 11,10, 9 18 /7 . 6.5.4,3,2 1,0
LI T
}
i

N l 16-BIT REGISTER

]
LI}
i3 T
LI B | T

—_ -

1
LR | L
] -
LI | LI |

-

Two’s Complement Numbers

Up to this time we've been working with “"absolute numbers” held in 8 to 16
bits. The binary numbers we've considered have always been positive, integer
values. This makes sense in many cases. Take X register values, for example.
The X register is primarily meant to hold memory address values, 0 through
65,535, and there is no such thing as a "negative address.”

However, we would like to be able to represent both positive and negative
numbers. (I need some way to handle balances in my checking account. . .)
How is it done?

49

5 Addition and Subtraction

The scheme that the 6809 and almost all other microprocessors or computers
use is called “two’s complement.” The format of two's complement numbers
is shown in Figure 5-4. Appendix V also lists all 8-bit two's complement
numbers.

7654 32 10

SIGN 7 MAGNITUDE
BIT BITS

15,14 ,13,12,11,10,9 , 8, 7,6, 5.4 ,3 (2 ,1,80

S
SIGN 15 MAGNITUDE
BIT BITS

SIGN BIT: 8-POSITIVE #
1=-NEGATIVE #

Figure 5-4. Two’s Complement Format

The most significant bit of an 8 or 16-bit number is designated as a "sign bit”’
The remaining bits are "magnitude bits”

If the sign bit is a 0, well and good. The remaining 7 or 15 bits represent the
“magnitude” of a positive number. In 8-bit values you can therefore have
positive numbers from 0 0000000 (0) through 0 1111111 (+127).

If thesign bitis a 1, however, the number represents a negative value. In that
case, change all the Os to 1s, change all the 1s to 0s,and add 1. Why? A purely
mechanical process that gives you the magnitude of the negative value.

Let’s take a subtract and show you how it’s done. See Figure 5-5 where we
subtract 123 from 100. The result was $E9, or binary 11101001. The most
significant bit was a 1, so the number is a negative number. Changing all I's to
Osandall Os to I's gives us 00010110. Adding 1 gives us 00010111. 060010111
is 23 decimal, and therefore the negative number is -23, what we should
expect to get by subtracting 123 from 100.

01100100 +100
01111011 -123
11101001
MS BIT CHANGE 1S TO 8S
=1 8BS TO 1S
00010110
+1 ADD 1
00010111 RESULT -23,,

Figure 5-5. Two’s Complement Example
50

Addition and Subtraction 5

Negative values of -1 (11111111) through -128 (10000000) can be held in 8
bits. (Note that although we can hold a negative number of -128, the
maximum positive number that can be held is +127.)

Two's complement works exactly the same in 16 bits. The same actions are
taken to convert. Look at the sign bit first, and if a 0, the number is a positive
number from 0 (0000000000000000) through +32,767 (O1T11T1111111111).
If the sign bit is a I, the number is a negative number from -1
(TLTTTLITLLTITT D) chrough -32,768 (1000000000000000).

Note that the two's complement number ranges are the same as BASIC
integer values. All BASIC integer values are in reality two's complement
16-bit values!

Why are two's complement numbers used? So that we can easily do adds and
subtracts with the ADD and SUB instructions in the 6809. We don't have to
laboriously check each number to see if it's positive or negative, we just go
ahead and do the add or subtract — the number will be adjusted accordingly.
We'll discuss this more in Chapter 10, along with other arithmetic
operations.

Review
To review what we've learned in this chapter:

e Eight-bit adds use either the A or B registers and an 8-bit memory operand
for the add

® Eight-bitadds can use direct page, extended, immediate, or other address-
ing modes

® Sixteen-bit adds use the D register as a "16-bit accumulator”

® Sixteen-bit adds add the operand from two memory locations to the
contents of DD

® Eight-bit and 16-bit subtracts are virtually identical to 8-bit adds and
subtracts as far as handling of operands and addressing modes

® Two's complement numbers express both positive and negative integer
values; if the sign bit is a 0, then the remainder of the number determines
the positive magnitude, otherwise a simple conversion must be done to
find the negative number

For Further Study

Two's complement numbers - Appendix V

51

KEY CHART — CHAPTER 6

INSTRUCTIONS

ABX LBHS -€tRAB—B5-
ADCA BITA CLR —+B4H—
ADCB BITB CMPA —+B¥
ADDA BLE CMPB -t+B+
ADDB LBLE CMPD LEAS
ADDD BLO CMPS LEAU
ANDA LBLO CMPU LEAX
ANDB BLS CMPX LEAY
ANDCC LBLS CMPY LSLA
ASLA BLT COMA LSLB
ASLB LBLT COMB LSL
ASL BMI COM LSRA
ASRA LBMI CWAI LSRB
ASRB BNE DAA LSR
ASR LBNE DECA MUL
BCC BPL DECB NEGA
LBCC LBPL DEC NEGB
BCS BRA EORA NEG
LBCS LBRA EORB NOP
BEQ BRN G- ORA
LBEQ LBRN INCA ORB
BGE BSR INCB ORCC
LBGE LBSR INC PSHS
BGT BvVC JMP PSHU
LBGT LBVC JSR PULS
BH! BVS +BA— PULU
LBHI LBVS BB ROLA

BHS CHRA +B5—

HAMEDHATFE

ROLB

ADDRESSING MODES

~“StMPEENDEXED

RELATIVE

DISPLACEMENT INDEXED
AUTO INCREMENT/DECREMENT

INDIRECT

SOPHISTICATED

PSEUDO OPS
EQU ORG
FCB RMB
FCC SET
FDB SEFBPR

Bold Type = Present Chapter
Regular Type = Future Chapters
Halic-Type = Past Chapters

52

ROL
RORA
RORB
ROR
RTI
RTS
SBCA
SBCB
SEX
STA
STB
STD
STS
STU
STX
STY
SUBA
suBB
SuBD
SWI
SWI2
SWiI3
SYNC
TFR
TSTA
TSTB
TST

EDTASM+ EDITOR COMMANDS

CHORG—
BHEEEFE— WHOVE— WERHY-
O~ NUMBER WERHEE

EDTASM+ ASSEMBLER COMMANDS (A)

/AO ABSOLUTE ORIGIN

/NO NO OBJECT

HIANAFPAORY—ASSEMBEY NSNO-SYMBOL—TABLE

“PENEPRINTER—
/MO MANUAL ORIGIN
/NL NO LISTING

/SS SHORT SCREEN
WEWAHTF—OMNERRORS-

EDTASM+ ZBUG COMMANDS

A(SCII) DISPLAY

C(ONTINUE)
~BHSPEAY

—OHOR—
—G164—
H(ALF) SYMBOLIC

HNPHFBASE—
L(OAD) ML FILE
M(NEMONIC) MODE
N(UMERIC) MODE
-OLOUTFRUTFFBASE

P SAVE ML ON TAPE

S(YMBOLIC DISPLAY)

T OISPEAY-BLOCHK—

THHARBCORY-BLOGK
U MOVE BLOCK

V (ERIFY) BLOCK
W(ORD) MODE

H—BREAKPOHINT

KAANK)—BREAKROINT
+—EXAMINE RPRECEDING

——EXAMINE NEXT—

-~ BRANCH INDIRECT

. FORCE NUMERIC

+ FORCE NUMERIC.BYTE
: FORCE FLAGS

L EXAMINE

, SINGLE STEP

GENERAL TOPICS

GRU-BREGISTERS
BATA—TFE—REGHSFERS-

LOADING AND-STORING-
ADDHHON- AND-SUBTRACTHON

CONDITION CODES

SYMBOLIC ADDRESSING

JUMPS, BRANCHES
RELATIVE BRANCHES

INCREMENTS/DECREMENTS

COMPLEMENTS
LOGICAL OPERATIONS
MULTIPLE PRECISION
DATA VALUES
INDEXING

INDEXING WITH XY
SORTING

SUBROUTINES

STACK OPERATIONS
ROTATES, SHIFTS
MULTIPLES

DIVIDES

DECIMAL ARITHMETIC
BASIC INTERFACING
PASSING PARAMETERS
VARPTR USE

ROM SUBROUTINES
OTHER ADDRESSING
GRAPHICS

SOUND

LARGER PROGRAMS

Chapter 6
Using the Condition Codes

The Condition Codes, also called "CC." are a collection of 8 bits. In this
chapter we're going to investigate the Condition Codes of the 6809. The
Condition Codes record the results of comparisons between operands and are
indispensable to conditionally altering the program flow with an assembly-
language program.

The 8 Condition Codes (Figure 6-1) reflect the results of arithmetic and other
instructions, as we'll see. The Condition Codes can alter the program flow, as
they can be tested by "branch™ instructions, which cause jumps to different
program code on the settings of the Condition Codes, which in turn are set by
prior arithmetic.

7 5 4 2 1 0
IEI IHIIl |ZIV|C|
! 1\)1

nije
Z|w

-

—

L CARRY CODE-SET FOR CARRIES, BORROWS
OVERFLOW CODE—SET FOR ARITHMETIC OVERFLOW

L_____ ZERO CODE-SET IF RESULT IS ZERO

L _NEGATIVE CODE-SET {F RESULT NEGATIVE

IRQ INTERRUPT MASK-SET TO ENABLE IRQ INTERRUPTS

HALF CARRY-CARRY OUT OF BIT 3

L FAST INTERRUPT MASK-SET TO ENABLE FIRQ INTERRUPTS

L _____ENTIRE STATE ON STACK-DETERMINES RTI ACTION

Figure 6-1. 6809 Condition Codes

—

Here's an example:

SUBA $3000 A — ($3000)
BEQ EQUAL GO IF A=(83000)
NOT EQUAL HERE

The first instruction above subtracted the contents of the byte at RAM
location $3000 from the A register. The subtract instruction affects most
Condition Codes. If the result is zero, the Z Condition Code is set as one of the
last actions in the subtract. The BEQ instruction is a "conditional jump” that
jumps to location EQUAL if the Z Condition Code is set, but otherwise
doesn’t “take the jump’ and "falls through” to the next instruction in
sequence. The mnemonic "BEQ"™ means "Branch if Equal”; in this case, the
BEQ actually tests the Z Condition Code to see if it is set because of the
equality of A and the contents of location $3000.

Set means a | condition, that is, Z=1.

More on Adds and Subtracts — the Z Condition Code

Let's look at some of the Condition Code actions during 8-bit adds and
subtracts, as we're already experts on these! Enter the code below.

6 Using the Condition Codes

GRIR ¥ ARITHMETIC (O ACTIONS

28CH 836 1 IO SIARI 1.DA W3 A O RAND

oa(D @ S| g cn SbA #.44 Ad- L8 @

ABCI- CH 29 w130 L.De #3 P OMEIRAND

@asD1 (@ =1 D4 SURk #.33 PR R

a8na3 yés s WAa1a LDA W34 A OPERAND

pEDYL B0 <1 Bt 6w SURA #AL B4 A4

3L /7 7E agn7 Aa1L7a L ook JME L oop t oo HuR
vree oo180 END

QA Tl Al ERRORS

LOOP a8n7

START BECR
Figure 6-2. Arithmetic Flag Actions Program 1

You can easily see the results of these operations using ZBUG. Assemble the
code so that you get an error-free assembly by A/IM.

Go to ZBUG. Now enter
START,

that's the label START followed by comma. This ZBUG instruction will
allow you to “single step” through any program an instruction at a time.
After you enter the START, ZBUG will immediately execute the instruction
at start and you'll see

H#START,
START+2/ SUBA #21

At this point you can do an R command to display the registers. Note the CC=
display. The CC= will be followed by a hex code, which represents the
Condition Codes as shown in Figure 6-1. To the right of the hex code, you'll
see another equals, followed by mnemonics of whatever Condition Codes are
set (equal to). The mnemonics correspond to the mnemonics shown in the
figure.

Atfter the first "single-step,” do another by entering only a comma

#Z

#START,

START+2/ SUBA #21

#R

A=XX B=XX DP=XX CC=XX =
X=XXXX Y=XXXX U=XXXX S$=XXXX
PC=XXXX

#,

Use a comma to single step through the six instructions. After each single
step, do another R to observe the registers.

Hinks and Kinks 6-1
More on Single Step

The single step command in ZBUG (a comma) is very powerful
because you can step your way through a program an instruction at a

54

Using the Condition Codes 6

time. In between instruction steps, you can use other ZBUG com-
mands to look at registers (R), memory (slash or T), or get hardcopy
(TH). Don’t worry about affecting the contents of registers or
memory by the other commands, the 6809 register contents will
remain intact from step to step.

When a single step comma command is executed, it displays the next
instruction to be executed, so you'll have to look at the preceding
instruction from a listing or from memory.

Here's what you'll see: The first subtract subtracted 33 from 33. The result of
this was 0 in the A register, so the Z Condition Code should have been set (1)
to indicate a Zero condition. You'll see a Z after the second equals. The next
subtract subtracted 33 from 32. The result of this is -1, or FFH, definitely a
“non-zero” condition, and the Z Condition Code should have been reset (0)
to indicate non-zero. You'll see no Z after the equals. The third subtract
subtracted 33 from 34; this is also a non-zero result, and the Z Condition
Code should have remained reset at 0 for no Z.

If you didn’t catch the Condition Codes the first time, run the program again
and try to observe the Z Condition Code.

The Z Condition Code, therefore, is set or reset according to the results of the
subtract. It is also normally affected by other instructions although certain
instructions, such as branches, leave the Z and other Condition Codes
unchanged.

In most cases you'll be using the Condition Code setting directly after the add,
subtract, or other processing in a conditional jump, so there won’t be
intervening instructions that could affect the Condition Codes. In other cases
the “test” of the Condition Codes by a conditional jump may be several
instructions away. It's important, therefore, to know which instructions
affect the Condition Codes, and which ones do not. You can find this
information in Appendix II, where all Condition Codes are listed for every
instruction type.

The N(egative) Condition Code

Another Condition Code in the CC register is the N Condition Code, standing
for "Negative.’ The N Condition Code is set (1) if the result of the operation
is negative, and reset (0) if the result of the operation is positive. Here again,
the N Condition Code is usually affected, but check Appendix II to make
certain. N is affected by adds, subtracts, and other arithmetic and logical
operations.

Single step the program above again, but this time watch the settings of the
N Condition Code.

You should have seen the N reset (0) as the first subtract of 33-33 was done.
55

6 Using the Condition Codes

This indicates that the result is a positive number. (Zero is always a positive
number in the 6809. If we apply the rules of two’s complement "notation”
and look at the sign bit, we see a positive number with a magnitude of

0000000.)

The next subtract was 32-33. The result here should have been a negative
value of -1. The N bit here was set (1) after the subtract to indicate that the
result was negative, and you should have seen an N mnemonic after the
second equals for the CC.

The last subtract was 34-33, for a result of 1, a positive number again. The N
Condition Code was reset (0) after this subtract.

Here's one of those interesting questions (that usually occur at 2:00 a.m.)
How does the 6809 know whether we are subtracting in two’s complement,
or in absolute form? In other words, we might be working with absolute
numbers in A from 00000000 through T1111111 (255), instead of two's
complement numbers of -128 through +127? The answer is: The 6809
doesn’t know! It blithefully sets the N Condition Code as if it were two’s
complement operations. However, we know, and if we are operating in
absolute numbers up to 255, we ignore the N Condition Code.

The Compare

There’s an important variation of the SUB instruction that we've ignored up
to this point. This is the CMP, or Compare instruction. The compare works
exactly like the SUB, except that it does not put the resule back into the A
register. It simply drops the result into the "bit bucket” on the floor behind
the Color Computer.

What the compare does do, however, is to set the Z, N, and other Condition
Codes. We can use the compare to test one operand against another without
destroying the contents of the A register.

20100 * ARITHMETIC CC ACTIONS

28DA 86 1 @B11@ STARTL LDA #33 A OPERAND
@8DC 81 21 20122 CMPA #33 33-33=0
@A8DE CC 1000 201.30 LDD #4$1000 A OPERAND
@BE1 FD 3000 av142 STD +3000 STORE
@8E4 B8E 1201 20150 LDX #$1001 OPERAND
@8E7 BC 3000 R160 CMPX 3000 $1001-%1000
@8EA TE @O8EA 20170 LOOP JMP LOOP LOOP HERE
[l 7] 20180 END

20200 TOTAL ERRORS

LOOP 28EA
START1 @8DA

Figure 6-3. Arithmetic Flag Actions Program 2

If you single step this program you can see how the Z Condition Code and N
Condition Code change for the CMPs. Also note that the A and X registers
don’t change when the CMP is executed. Note that the CMP is different from
the subtract because it can be used with X. In fact, you can do a compare for A,

56

Using the Condition Codes 6

B, D, S, U, X, or Y (CMPA, CMPB, CMPD, CMPS, CMPU, CMPX, or
CMPY).

The CMP instruction is probably used more frequently than the SUB and
that's probably why it can be used with all registers. You can use direct page,
extended, immediate, or simple indexed addressing with the CMP, along
with addressing modes that we haven't covered, such as more involved
indexing.

A Special CMP

There's another instruction that is very similar to the CMP. It’s the TST
instruction which may be used with A or B (TSTA, TSTB) or with an operand
ina memory location (TST). The TST only sets the N and Z Condition Codes
based on the contents of A, B, or the specified memory location. It's used fora
“quick” test of an operand without having to waste an instruction or time in
doing an actual comparison to data.

TSTA TEST CONTENTS
OF A (N AND Z)
TST $3000 TEST ($3000)

The Overflow (V) Condition Code

The Overflow Condition Code, abbreviated V, is used to record an overflow
condition for arithmetic instructions like the ADD, SUB, and CMP. Overflow
occurs when the result of an add or subtract is too large to be held in 8 or 16
bits. Examples are an add of 120 and 20 in 8 bits, or a subtract of -30,000 from
+10,000 in 16 bits. Both results will set the V Condition Code to 1, indicating
an overflow condition.

For an example of the V Condition Code operation, see the following code:

* V FLAG OPERATION

ANUDR LDA #100 100
ADDA #100 100+100=200=V!
LDD #-30000 -30000
ADDD #-30000 -60000

LOOP JMP LOOP LOOP HERE
END

Single step through this code and keep a sharp eye on the V Condition Code
mnemonic when doing an "R"” register display.

What did you see? The first ADD added an immediate 100 to the 100 in the A
register for a result of 200. This is an overflow condition, and the V Condition
Code should have been set to a 0, indicating no overflow; you should not have
seena "V

The next add added an immediate -30000 to the -30000 in the D register to
57

6 Using the Condition Codes

itself. This is an overflow condition and you'd see that the V Condition Code
was set to indicate overflow for this instruction!

Hints and Kinks 6-2
Overflow on Absolute Numbers

What about overflow on absolute numbers? The Overflow Condi-
tion Code is not valid for arithmetic operations on absolute
(unsigned) numbers, but there are certainly overflow conditions, as
in adding $3000 to $E000 to compute a memory address (the result
of $11000 cannot be held in 16 bits). Use the Carry Condition Code
to check that the result did not exceed 255 or 65535 on an add; it will
be set if overflow occurred. On a subtract use the conditional Branch
“"BLO" to detect if the result “went negative” (conditional branches
are discussed in the next two chapters).

The C(arry) Condition Code

The Carry Condition Code is used in many different operations in the 6809.
Its original use was to hold the state of the carry from the most significant bit

of an add, or a borrow to the next bit on a subtract, as shown in
Figure 6-4.

Cc
CONDITION

CODE 10110101 181
+01101111 111

D 4" 00100100 (CARRY TO NEXT BIT)

c
CONPHEON 00000000)
-00000001 1
—a 1 (BORROW FROM NEXT BIT)

Figure 6-4. Carry Condition Code Actions

Another use of the Carry Condition Code is to hold the state (0 or 1) of the
most significant bit on a "shift” or "rotate” operation. We'll look at these
applications of the Carry Condition Code in future chapters.

Review

To review what we've learned in this chapter:

® There are 8 Condition Codes in the CC register; they are grouped together
as the CC register

¢ The Z Condition Code is set after arithmetic and other instructions when
the result is zero; it is reset when the result is non-zero

58

Using the Condition Codes 6

The N Condition Code is set after arithmetic and other instructions when
the result is negative; it is reset when the result is positive

The 6809 acts as if two's complement numbers were being processed in
setting the N Condition Code, but the arithmetic may be "absolute”

The Compare instruction CMP acts like a Subtract in Condition Code
settings, but does not put the result into the register

The V Condition Code is set to indicate overflow conditions for both 8 and
16-bit operations

The Carry Condition Code is used to record the carry or borrow from a
high-order bit or the state of a bit on a shift or rotate

The Condition Codes are affected for most instructions, but not affected by
others; the programmer must be aware of when they are affected

For Further Study
Appendix II: CC Settings

59

KEY CHART — CHAPTER 7

INSTRUCTIONS EDTASM: EDITOR COMMANDS
ABX LBHS -€+tRB—tD5— ROL ALSSEMBHF HNSERF RIEPEACH)
ADCA BITA CLR +B- RORA GrE6A¥%+ —HOAB— HHARBCOFY
ADCB BITB ChFA- +B¥ RORB BEEEF+ - WERH
#BHA BLE GMRB- LDY ROR = AHHABEH W
ABBH- LBLE -emPB LEAS RTI —FHANEF PR FHBUG—

AP0~ BLO MRS LEAU RTS +HARBCOPYS Qo
ANDA LBLO -emPH~ LEAX SBCA
ANDB BLS -6Mfx%- LEAY SBCB

DTASM+ ASSEMBLER COMMANDS (A
ANDCC LBLS -6MP¥- LSLA SEX EDTASM+ ASSEMBLER CO (A)

/ .
ANDCC LBLS —gMex- LSLA SEX /AO ABSOLUTE ORIGIN /NO NO OBJECT
ASLB LBLT COMB Lol -efg THMINMEMORYASSEMBLYL —NSNO-SYMBOL-TABU

PN RRNTER- /SS SHORT SCREEN
ASL — BMI - COM LSRA SFB~ y0 MANUAL ORIGIN AT ON-FRRORS

ASRA LBMI CWAl LSRB -S¥5 , LIST]
ASRB BNE DAA LSR -SF- /NL NO LISTING
ASR LBNE DECA MUL S

SF¥

BCC BPL DECB NEGA EDTASM+ ZBUG COMMANDS

LBCC LBPL DEC NEGB -S&BA- A(SCI) DISPLAY FHSPLAYBOCHK—
BCS BRA EORA NEG SHRR— BIYFFHHMOBE T HARDCORY- BLOGK
LBCS LBRA EORB NOP suas- C(ONTINUE) U MOVE BLOCK
BEQ BRN X6 ORA SWi DHSREAYS- V (ERIFY) BLOCK
LBEQ LBRN INCA ORB sSwi2 EBHFOAR W(ORD) MODE
BGE BSR INCB ORCC SwiI3 66 H—BREAKLOINT-
LBGE LBSR INC PSHS SYNC H(ALF) SYMBOLIC K—AANK—BREAKPOHNF~
BGT BVC JMP PSHU TFR HNPUTFBASE— + EXAMINE-RRECEDING
LBGT LBVC JSR PULS 7S7A L(OAD) ML FILE —EXAMHNENEXTF—
BHI BVS +54A— PULU TSTB M(NEMONIC) MODE - BRANCH INDIRECT
LBHI LBVS —AHH— ROLA ST N(UMERIC) MODE . FORCE NUMERIC
BHS LLRA LDD- ROLB —H TP OASE— + FORCE NUMERIGC.BYT
P SAVE ML ON TAPE . FORCE FLAGS
RIECISTERDISPLAY— —E XA~
NHERENT ADDRESSING MODES S(YMBOLIC DISPLAY) —SHGHSFER—
BIRECF
~EXTFENDHED- GENERAL TOPICS
M DHATE GCRUAEGISTFERS- SUBROUTINES
SHHPEINBEXED DATA FO-REGISTERS- STACK OPERATIONS
RELATIVE LOADING AND-STORING- ROTATES. SHIFTS
DISPLACEMENT INDEXED AHHFAOM-AMD-SHBTFRAGHON MULTIPLES
AUTO INCREMENT/DECREMENT CONDHHON-GOBES— DIVIDES
INDIRECT SYMBOLIC ADDRESSING DECIMAL ARITHMETIC
SOPHISTICATED JUMPS, BRANCHES BASIC INTERFACING
RELATIVE BRANCHES PASSING PARAMETERS
INCREMENTS/DECREMENTS VARPTR USE
PSEUDO OPS COMPLEMENTS ROM SUBROUTINES
Egg S'\F}‘g LOGICAL OPERATIONS OTHER ADDRESSING
MULTIPLE PRECISION GRAPHICS
Fgc SET DATA VALUES SOUND
FDB SEFOR INDEXING LARGER PROGRAMS
INDEXING WITH X.Y
SORTING

Bold Type = Present Chapter
Regular Type - Future Chapters
Ralic Type = Past Chapters

60

Chapter 7
Symbolic Addressing, Jumps,
and Branches

Assembly language uses symbols to represent absolute memory locations.
These symbols can be referenced in jumps and branches, instructions that are
similar to BASIC "GOTO"’s or "IF... THEN" commands. In this chapter
we'll see how the 6809 performs “loops™ or “iterative” operations by means
of branching instructions.

A loop is simply two or more cycles through the same set of instructions. For
an example of a simple loop, see the code below:

02120 * SIMPLE LOOP

B8R4 BE 064 P011@ SIMLOFP LLDX #100 LOAD X WITH 100
28R7 BF 3200 20120 STX 3000 STORE 100 IN 43008
@8ra CC 0000 26130 LDD #0 CL.LEAR D
ogeDd F3 3000 P14 SIMBI@ ADDD +3000 ADD 1@@ TO D
@8Co 7E @8ED 20150 JMP SIM31Q LOOP

o000 20160 END

AV2VO TOTAL ERRORS

SIM@1@d O8ED
SIMLOP Q83B4

Figure 7-1. Simple Loop Program

If you've assembled this code, you can single step in ZBUG by using
“SIMLOP;," followed by a single comma for each instruction step.

If you use the R command and single step as the program executes, you can
see that the D register is incremented by 100 each time through the loop.
Notice also how the program counter display changes between the location
of SIMO10 and the instruction following.

The JMP SIMO10 instruction is an “unconditional” jump instruction. It
always jumps back to a specified address.

Look at the three machine-language bytes for the JMP SIM010 instruction.
The first is an “opcode” byte of $7E. The next two are address bytes for the
instruction.

The value of the two address bytes correspond to the location of the label
SIMO10. You can verify this by looking at the assembly listing or by the
“symbol table” values printed out at the end of the assembly.

Symbolic Addressing

Using a label instead of an absolute address in memory is termed “symbolic
addressing.” It relieves the programmer of having to compute the actual
address for the Jump. Of course, you could still “hand assemble” machine-
language object code, but it's much more convenient to let the assembler do it
for you.

We've used labels for breakpointing and execution in ZBUG in previous

6l

7 Symbolic Addressing, Jumps, and Branches

chapters, but this is the first time that we're using them for their primary
purpose — "tagging” an instruction for a Jump point. (Other than for the
LOOP JMP LOOP we've included as "protection” for preceding programs.)

EDTASM+ and all assemblers build a table of symbols (appropriately enough
called a “symbol table™). In it are all labels and other symbols encountered in
the program. The assembler uses the symbols to "build” the addresses in
instructions, as, for example, the address of SIM010 in the program above.
The symbol table is dumped at the end of an assembly, unless you use the
special assembler “switch” /NS to avoid displaying or printing the symbol
table.

You can use labels for locations anytime you wish. The labels are usually
associated with jump points, but do not have to be. Labels may be 1 to 6
characters, the first of which starts with an alphabetic character. One conven-
tion that I've used here, and that other programmers often use, is to make the
primary label a G6-character descriptive label, and to make following labels the
first 3 characters of the "module,’ followed by 3 digits. Often the digits will be
in order, as in BASIC lines. You might have SQROOT as the first label of a
square root code segment, for example, and the labels following would be
SQRO10, SQR020, SQRO80, and SQR090.

Labels can also be used for immediate values as in

LOCA LDA #20 LOAD A WITH 20
LDX #LOCA LOAD X WITH LOCA

which loads X with the address of the instruction at LOCA.

Hints and Kinks 7-1
Nested Loops

We've indented the comment portions of source code lines to
indicate loops in this book. The further to the right the comment is
indented, the “lower level” the loop is. Loops can be nested to any
level, but typically you won't have more than about two or three
levels of loops.

One of the nicest features of ZBUG is its ability to access the assembler
symbol table and find out where the labels in the program are. (This feature
is known as “symbolic debugging’’) That's how you can refer to a symbolic
location such as "LOOP” instead of using an absolute location in
breakpointing.

Unconditional Jumps

The JMP instruction above is one of the unconditional jumps in the 6809
(there are other "BRanch” jumps that we'll talk about in the next chapter). It

62

Symbolic Addressing, Jumps, and Branches 7

always has the same format of a $7E opcode, followed by two address bytes,
and always transfers control to the jump address. Note that the jump address
can be anywhere in memory — location 0 through 65,535; of course some of
these addresses are invalid in the Color Computer as they define ROM or [/O
addresses (see Figure 2-1).)

The symbolic address used in the JMP is a common way of specifying the JMP
point. Could you have used an absolute memory address such as $3056? Sure,
but you wouldn’t know what the values were until after you assembled. You'd
have had to make up some dummy values, do a single assembly pass, find out
the actual locations, and then fill in the proper addresses. With symbolic
addressing, the assembler does it for you.

Hints and Kinks 7-2
Using Labels as Immediate Values

What happens when labels are used as immediate values, as in the
example above? The assembler sees that an immediate value is to be
loaded by the “#” sign prefix. It then checks to see if the operand is
numeric. If it isn’t, it then assumes that it is a symbol. The symbol
table is then scanned to see if there is a symbol “match.’ As the
symbol table holds all labels and their corresponding address values,
the symbol (label) should be found, and it should represent an
absolute location value. This value is then used in the immediate load
just as if a numeric value was specified in the first place. Typically,
the X or Y registers might be loaded with the starting address of a
table or block of variables in this fashion. The start of the table might
be called “TABLE" and an LDY #TABLE would load the TABLE
location into Y.

Hints and Kinks 7-3
The BRA Instruction

The Branch Always instruction is very similar to a JMP instruction
except that it uses 2 bytes instead of 3. The JMP can jump anywhere
in memory and normally uses direct or extended addressing. The
BRA uses a form of addressing called “relative addressing” that we'll
look at in the next chapter.

Originally Motorola engineers had even more Branch instructions,
but at the last minute, such useful branches as "Branch if Tuesday
(BTU)” and "Branch Occasionally (BOC)” were left out of the 6809
design. Lucky for us. ..

63

7 Symbolic Addressing, Jumps, and Branches

Conditional Jumps (Branches)

The loop in the program above has one drawback; it never stops. We can
easily control the loop, however, with a “conditional” jump. As an example of
a loop with a conditional jump, look at this code:

Q100 *LOOFP WITH CONDITIONAL BRANCH

BF1F 4F @211@ ADDNUM CLRA ZERO TOTAL
ez Cb oA 20120 L.DB #12 COUNTER
09z2 F7 3000 20130 STE 3000 STORE
2925 ek 3000 20140 ADDQ1O ADDA $3000 ADD 10+49+8+7. ..
@7:8 C@ a1 o150 SURR #1 COUNT-1
29zA F7 3000 20160 ST $3000 SAVE COUNT
09:zD 26 Féa 02170 LOPEND BNE ADDR1@ LOOP IF NOT @
092F 7E BFZF 20182 L.OOP JMP LOOP L.OOP HERE

naro o190 END

20RBY TOTAL ERRORS

ADDB1@ @923
ADDNUM D71F
LOOP Q9:F
LOPEND @9ZD

Figure 7-2. Loop With Conditional Branch

This short program adds the numbers from 1 to 10; at the end of the
program, the total is in the A accumulator.

The “loop” from label ADDO10 through label LOPEND is repeated 10
times. The first time, 10 is added to A (initially set to 0), the next, 9 is added,
the next, 8, and so forth, down to 0.

Let’s look at the code in detail. The CLRA instruction zeroes the total in A. A
will be used to hold the runnng total.

The next instruction loads the B register with 10. B will be used to hold the
current number and will start with 10 and "decrement” down to 0. The next
instruction stores the current number into memory location $3000. This
location will hold the current count also, as the B register cannot be added to
A, but the second operand for the add must come from somewhere in
memory.

The loop starts at ADDO010. Each time through the loop, the following
actions occur:

e The contents of RAM location $3000 is added to the contents of A with the
result going into A.

e A SUBB #1 is done to subtract 1 from the count in B. B is initially 10. After
the first SUB, it is 9, after the second, it is 8, and so forth. The count is then
stored in $3000.

® The Z Condition Code is set on the result of the SUBB #1. If the Z flag is
reset (Z=0), then A is not 0; if the Z flag is set (Z=1), then A is 0.

¢ The BNE instruction tests the Z flag. If it is not set (NE), the jump is made
just as if the BNE was an unconditional JMP. If the Z flag is set, then the

64

Symbolic Addressing, Jumps, and Branches 7

BNE "“falls through™ to the end instruction and 10 passes through the loop
have been made.

Conditions for Branches

We used an “NE” for the condition in the BNE. This is equivalent to “Branch
if Not Equal” . Logically, this is the same as "Branch if Not Zero." The
mnemonics for a conditional Branch may be somewhat confusing, so we'll list
some of them here:

Mnemonic Meaning Flag Setting for BR

BEQ Branch if Equal

(Zero) Z=1
BNE Branch if Not

Equal (non-Zero) Z=0
BCS Jump if Carry Set C=1
BCC Jump if Carry Clear C=
BMI Jump if Minus N=1
BPL Jump if Positive N=0

These are a few of the mnemonics for conditional branches. We'll be discuss-
ing others in later chapters.

Here are some examples of the use of these mnemonics in BR instructions:

SUBB $3000 B-($3000)

BEQ ZERO JUMP IF ($3000)=B
BPL PLUS JUMP IF ($3000)<B
BMI MINUS JUMP IF ($3000)>B

In the first of these instructions, the contents of $3000 is subtracted from A.

The resultis either 0, greater than zero, or negative. The BEQ tests the Zero
Condition Code. If the Z Condition Code is set (EQ condition), then a branch
is made to location ZERO.

If the BPL instruction is executed, then the contents of $3000 cannot equal B.
A test is made of the Negative Condition Code by the mnemonic "PL” for
plus. If the N Condition Code is reset (PL condition), then a branch is made to
location PLUS.

1f the BMI instruction is executed, then the contents of $3000 cannot equal B
or be less than B. As a matter of fact, the result must be negative here, and the
N Condition Code must be set (N). The BMI MINUS always results ina BR!

A Comparison Test Using Modify Memory

Let's expand the code above into a full-fledged comparison test of two
memory locations:

65

7 Symbolic Addressing, Jumps, and Branches

20120 » COMPARIGON TEST OF $320@ AND $3001

3000 20112 COMPTS LDA +.3000 FIRST OPERAND

3001 P21:0 SURA 3001 FIRST OF- GFE COND OF
300 D130 57A $3002 GIORE RESUILL

s 201402 BNE NEXT1 GO IF NOT @

o8 2015 BRA STORL: WIND UF

D4 PR16@ NEXTI BMI NEXT & GO 1F FIRST<&E (OND
21 20170 LDA #1 1 ro A

o bL1BO ERA STORE GO TO LTORE

FF 2190 NEXTLZ LDA #1 =1 T A

3oz A0z20 STORE STA s$300r STORE RESULT

@970 @ @ LOOP Jmp Loop LOOP HERE

lelralr} : END

Q0200 TOTAL ERRORS

COMPTS B985
LOOP 299D
NEXT1 299z
NEXT @998
STORE B99A

Figure 7-3. Comparison Test of Two Locations Program
The program compares two operands each from 0 to 127 at locarions $3000

(operand 1) and $3001! (operand 2). The result of the comparison is put into
location $3002. The result will be as follows:

Condition Result ($3002)
(Op 1=0p 2) 0
(Op 1>0p 2) 1
(Op 1<0p 2) -1

To run the program you must first put two operands you want to compare
into locations $3000 and $3001. If you want to run the program you can do
this in ZBUG by using the slash command to modify memory.

#3000/ 1 (DOWN ARROW)
3001/ 2 (ENTER)
Breakpoint at LOOP by
#XLOOP

and execute by
#GCOMPTS

After the breakpoint, examine location $3002 by the slash command in
ZBUG.

At the end of execution, you should see the contents of location $3002
changed to reflect the results of the comparison. It should be a 0, 1, or -1
(equals, greater than, or less than).

The program works similarly to the earlier version, and we'll leave it up to
you to scrutinize it.

66

Symbolic Addressing, Jumps, and Branches 7

Review
To review what we've learned in this chapter:
® Loops are portions of code that are executed more than once in sequence

® Labels used in source lines generally give the line a “name” that the
assembler will reference for jump addresses and which ZBUG can use

® Labels are | to 6 characters long and start with an alphabetic character

® There are several "unconditional” jumps in the 6809 that always jump to
the jump address

® Labels can also be referenced for loading immediate data where the data is
an address, such as a jump address

¢ "Conditional” branches jump if the condition is met, but otherwise do
nothing

® Conditional branches test the state of the Zero Condition Code, the
Negative Condition Code, the Carry Condition Code, and others

® Conditional branches use the following mnemonics: BEQ, BNE, BCS,
BCC, BMI, BPL.,, and others

For Further Study

Appendix Il — check the Condition Code actions for conditional and uncondi-
tional branches

67

KEY CHART — CHAPTER 8

INSTRUCTIONS

ABX LBHS -€StR8—tB5
ADCA BITA CLR +Bt—
ADCB BITB CMHPA— %
ADBA BLE EMPE +HB¥
4568~ LBLE -6MPH~ LEAS
-AHHH5 BLO -6MRS LEAU
ANDA LBLO -6MRLJ LEAX
ANDB BLS —-GMRX- LEAY
ANDCC LBLS -G#R¥ LSLA
ASLA BLT COMA LSLB
ASLB LBLT COMB LSL
ASL BMI COM LSRA
ASRA LBMI CWAI LSRB
ASRB BMf— DAA LSR
ASR LBNE DECA MUL
BEEC- B DECB NEGA
LBCC LBPL DEC NEGB
BECS- BRA— EORA NEG
LBCS LBRA EORB NOP
BEQ BRN G- ORA
LBEQ LBRN INCA ORB
BGE BSR INCB ORCC
LBGE LBSR INC PSHS
BGT BvVC - PSHU
LBGT LBvVC JSR PULS
BHI BVS +EA— PULU
LBHI LBVS 56 ROLA
BHS —StRA- +BH— ROLB
ADDRESSING MODES

“INHERENT

BIREETF

EXFENDED

MM EDHATFE—
SHHPEINDEXED—
RELATIVE

DISPLACEMENT INDEXED
AUTO INCREMENT/DECREMENT

INDIRECT
SOPHISTICATED

PSEUDO OPS

EQU ORG
FCB RMB
FCC SET
FDB SEFBR
Bold Type Present Chapter

Regular Type Future Chapters

Halic Type - Past Chapters
68

ROL
RORA
RORB

EDTASM+ EDITOR COMMANDS
ASSEMBE HANSERF RHEPEACES

EDTASM+ ASSEMBLER COMMANDS (A)

/AO ABSOLUTE ORIGIN

/NO NO OBJECT

HANMEAORY—ASSEMBEY HNSNO-SYMBOL—TFARL

AR LANE RRINTER —

/MO MANUAL ORIGIN
/NL NO LISTING

/SS SHORT SCREEN
HE—WAH—OMNRARORS

EDTASM+ ZBUG COMMANDS

A(SCIl) DISPLAY

C(ONTINUE)
BHEPEAY -

£HBHFOR-
6+
H(ALF) SYMBOLIC

~HAHPH A —
L(OAD) ML FILE

M(NEMONIC) MODE
N(UMERIC) MODE

- YFHBASE—
P SAVE ML ON TAPE

RUEGISTERI-DISRLAY-
S(YMBOLIC DISPLAY)

T OSPLAY BLOCK—
FAHHARBEGORKBLEEEK
U MOVE BLOCK
V (ERIFY) BLOCK
W(ORD) MODE
HX—BREAKPOINT
FAANK—BREAKPOHN
+—EXAMINEPREGEDNG
—EXAMINENEXT—
— BRANCH INDIRECT
; FORCE NUMERIC
+ FORCE NUMERIC.BYT
. FORCE FLAGS
A EXAMINE-

SINGLE STER

GENERAL TOPICS

~HHARE—BRANGHES-
RELATIVE BRANCHES

INCREMENTS/DECREMENTS

COMPLEMENTS
LOGICAL OPERATIONS
MULTIPLE PRECISION
DATA VALUES
INDEXING

INDEXING WITH XY
SORTING

SUBROUTINES

STACK OPERATIONS
ROTATES. SHIFTS
MULTIPLES

DIVIDES

DECIMAL ARITHMETIC
BASIC INTERFACING
PASSING PARAMETERS
VARPTR USE

ROM SUBROUTINES
OTHER ADDRESSING
GRAPHICS

SOUND

LARGER PROGRAMS

Chapter 8
Relative Branches, Conditional
and Unconditional

“Relative” Branches are instructions that use the relative addressing mode to
jump conditionally, based on the Condition Code settings, or unconditionally.
The relative addressing mode is a special one-byte mode (plus one byte of
opcode) that saves instruction bytes by making the branch address relative to
the location of the Branch instruction itself. In this chapter we'll look at the
format of Relative Branches, and the types of conditional Branches that can
be made.

To see the basic difference between the two absolute jumps (such as JMP) and
relative jumps (such as BEQ) let's look at a sample program rthat uses a BR
type jump, or branch. (By the way, when we say “jump” or “branch” it means
exactly the same thing.)

@Ae10@ * RFLATIVE BRANCHES

2991 FC 3000 2@11@ RELJRS LDD $3000 L OAD SeUARIZ
Q994 8E FFFF an1a L DX #-1 CLEAR SOUARE ROOT
997 108E 00O1 2130 DY #1 INITIALIZE ODD INTEGER
2?9 10RF 300 RO14@2 STY $30@ STORE IN MEMORY VARIAPLE
@99F 30 21 @22150 REI.O1@ |.EAX 15X SAUARE ROOT+1
29A1 31 3E 20160 LEAY =Y DD INTEGER -2
QA3 1QRF 300:2 20170 STY $300:2 STORE QDD INTEGER
@oA7 F3 300z 22180 ADDD X450 SOUARE -ODD INTFGER
@9AA 25 3 20190 BCs REL Q1O LOOP IF NOT MINUS
QIAC BF 3003 STX $3003 S10ORE SOUARE ROOT
B9AF 7E @FAF LOOP JMP LOOP LOOP HERE
2002 E'ND

2000 TOTAL ERRORS

LOOP BYAF
RELOLO @99
RELJRS @991 .
Figure 8-1. Relative Branches Program
If you'd like to see how this program works, enter the source code above and
assemble by A/IM.

The program above ties together a lot of the concepts thar we have discussed
in previous lessons into a program that will calculate square roots. As you
know by now, the 6809 doesn’t even have the capability to divide numbers
(although it does have a Multiply instruction); developing a square root
program is therefore not a minor accomplishment.

Let's see how the program works: A square root of a number is a number
which when multiplied by itself will give the number, in case you're rusty. The
square root of 100, for examiple, is 10,as 10 times 10 is 100. The square root of
169 15 13, as 13 tmes 13 is 169, The square root of 178 1s 13.34.

One way to find a square root is to tuke the “square”™ and start subtracting
“odd integers™ - 1,3,5,7,9,and so forth from it. The number of subtracts that
cun be made is the square root. Don’t ask me how it works, but it does!

Take a square of 102, for example. 102-1 is 101-3 is 98-5 is 93-7 is 86-9 is

69

8 Relative Branches, Conditional and Unconditional

77-1118606-131s53-151s 38-17is 21-191is 2-21 is - 19. We were able to subtract
1,3,5,7,9, L1, 13,15, 17, and 19 from 102, a total of 10 odd integers, so the
square root is 10. In this method we don’t get the fractional part of the square
root, only the “integer part”

To run the program, use the slash command of ZBUG to enter a square into
locations $3000 and $3001. The number 1000, for example, would be $03,
followed by $ES.

After entering the value and verifying that it is correct, run the program by
breakpointing LOOP and starting at RELJRS.

*A/IM (assemble)

*7, (go to ZBUG)

#B (Byte mode)
#3000/ 03 (DOWN ARROW)
#3001/ £8 (ENTER)
#XL.OOP (breakpoint LOOP)
#GRELJRS (start at RELJRS)

At the end of the program, you'll see the integer square root in locations
53003 and $3004; usc the slash or T commands in ZBUG to examine the
result. If you used a 1000 as the square, for example, you'll see 31 decimal or
$1F inlocations $3003 and 8300 taken together as 16 bits (800 in $3003 and
$1F in $3004).

Hints and Kinks 8-1
Square Root Program Notes

This is not the ultimate square root program, but it is casy to
implement. The square root result is found to the next lowest
integer. “Scale up” the square for more precision by multiplying by a
“finagle factor” and then dividing by the square root of the finagle
factor. To find the square root of numbers up to 655, for example,
multiply the square by 100, perform the square root program, and
then divide the result by 10. Example: Find square of 200.
200*100=20000. Square root of 20000 by program is 141. Divide by
10 to ger answer of 14.1, one more digit of precision than 14, the
answer without “scaling”’

The square root is a 16-bit number, even though it cannot be more
than 255. The most significant byte (in $3003) will always be 0, and
the next byte (in $3004) will be the 8-bit result.

Let's review the steps of the program:

First, the D register was loaded with the square from locations $3000 and
$3001. This was an "extended load” of two bytes.

Next, the X register was loaded with -1. The X register will have [added to it

70

Relative Branches, Conditional and Unconditional 8

each time through the loop of the program. We must start off with -1 so that
the first add of 1 results in 0.

Next, the Y register was loaded with +1. The Y register holds the "odd
integer” of 1, 3,5, and so forth. Y will have 2 subtracted from it each time
through the loop. When this is done the first time, the initial +1 value
becomes a -1. The Y register is then stored into location $3002. The odd
integer in $3002 will be added to the square in D each time through the loop.
An add of a negative value is the same as a subtract of a positive number,
after all.

The loop starts at RELO10. You can see the indented comments that indicate
the instructions that are part of the loop.

Each time through the loop, these things happen:

One is added to the X register. This "bumps” the count of the number of odd
integers successfully subtracted from the square. The add is done by the
LEAX 1,X instruction, which adds | to the contents of X and puts the result
in X. We'll discuss in detail how this instruction works in the next chapter.

Two is subtracted from the odd integer in Y to get the next odd integer. We
started off with +1, and after the first subtract we have -1. The instruction
here is an LEAY -2,Y which we'll discuss in the next chapter. The resultin Y
is stored in RAM location $3002.

An ADDD $3002 is done. This “subtracts” an odd integer in $3002 from the
square (or from the "residue” of the last subtract) in HL.

The Carry Condition Code is set to 1 (C) if the result of this subtract is 0 or
greater. In other words, as long as the result in D is not a negative number, the
C Condition Code will be set. As soon as the result “goes negative.’ the C
Condition Code will be reset (NC or 0). Why is the Carry set in this fashion?
There’s no easy answer to this. The Carry is simply set from the carry bit out
of D as the add is done, and one of the peculiarities of an add is that there will
be a carry as long as the result is not negative. You don't have to memorize
this fact, but bear in mind that the Carry can be used to test for this condition.

The instruction used to test the Carry is “Branch on Carry Set” or BCS, which
is the same as "Branch if C=1."If the result has not “gone negative,’ the BR is
made back to RELO10 for the next operation. If the result has gone negative,
X contains the count of odd integers successfully subtracted, and this is put
into locations $3003 and $3004.

Hints and Kinks 8-2
Why the Carry Flag is Set
The best way to see how the carry flag works is to try some ADD

examples yourself. You'll see that there is always a carry until the
result “goes negative!’ Examples:

71

8 Relative Branches, Conditional and Unconditional

00000100 00000011 00000010 00000001 0000000
1110011 +p11trer +111rritr +11ittltl +1111111

C 00000011 C 00000010 C 00000001 C 00000000 1111111

If you like, enter and assemble the program, and then single step through the
program. You'll be able to see what is happening in the loop quite easily. Also,
you might want to refer to Figure 8-2, a "flowchart” of the program. lt
represents the program “flow” in schematic form.

\V4

RELJRS

GET

SQUARE |——TwoO BYTES SQUARE
3 TOD N
FROM $3000 INTEGER |——ADD D,$3002
-SQUARE

Y
1-SQRT | ——IN X

| YES ——(CC)
HCINT— N i

EGER Y. STORE
$3002 SQUARE IN
$3003
REL@10 Y
A

SQRT+1 _
oRT 1 BUMP X END

Y

'N"{:SEEGRE': ——DECREMENT
Y, $3002

Figure 8-2. Square Root Flowchart

Now for the reason for this chapter, the format of "Relative” Branch
instructions. After assembly, look at the machine-code for the BCS. It should

72

Relative Branches, Conditional and Unconditional 8

be 25 F3 in hexadecimal. Notice anything different about the BR codes
compared to the JMP of the last chapter?

The BCS instruction is 2 bytes long, while the JMP is 3 bytes! And that's the
reason BR instructions were added to the 6809 instruction set, primarily to
save memory. As jumps are used all the time, saving one byte in a jump can
result in a 5% or more savings in memory space for a program.

Relative Addressing

Look again at the BCS bytes. The first byte is an “opcode” byte that tells the
6809 that a BR is about to be executed. The next byte somehow must specify
the address for the jump. But how?

The BR uses “relative addressing.” Relative to what? Relative to the location
of the instruction. Here's the way the 6809 finds the address for the jump (see
Figure 8-3):

BCS REL®10 THIS INSTRUCTION

/[E l F3 ' ASSEMBLES TO THIS

OPCODE \DISPLACEMENT
\U/ (OFFSET)
11110011 $F3
1111111111110011 “SIGN-EXTENDED" $F3
1111111111110011 DISPLACEMENT +
0000100110101100 PROGRAM COUNTER

(CONTENTS -$9AC)

RESULT IS JUMP ADDRESS
0000100110011111 ($899F,13 BYTES

"BACK")

Figure 8-3. Relative Addressing Example

The second byte of the BCS instruction is made into a 16-bit number. This
byte is an 8-bit “signed value” (negative or positive), with the first bit
representing the sign. Our old friend (enemy?) the two's complement repre-
sentation is in force here.

To make an 8-bit two's complement number into 16 bits, we have to “sign
extend” the sign bit. If the sign bit is a 0, we put zeroes into the most
significant byte; if the sign bit is a 1, we put ones into the most significant
byte. In this case we'd need ones.

This 16-bit number is then added to the contents of the Program Counter
register. The Program Counter always points to the next instruction to be
executed. In the case of the BCS, it points to the STX $3003 instruction.

Adding the PC and the 16-bit number together gives the location of the
73

8 Relative Branches, Conditional and Unconditional

branch address, as shown in the figure. And all that with just 8 bits for an
address!

Of course, all of this is done internally in the 6809. You never have to do the
arithmetic as we just did. The assembler will take care of putting in the
proper value in the Branch instruction, so that all you have to do is use a
symbolic label for the branch location, as we did.

Types of BRs

There are 17 conditional BRs, and one unconditional BR. Some of the
conditional BRs were covered in the last chapter. The 17 conditional
BRs are

Mnemonic Meaning CC For Branch
BEQ Branch if Equal (Zero) Z=1
BNE Branch if Not Equal (non-Zero) Z=0
BCS Branch if Carry Set C=1
BLO Branch if Lower C=1
BCC Branch if Carry Clear C=0
BHS Branch if High or Same C=0
BMI Branch if Minus N=1
BPL Branch if Plus N=0
BVS Branch if Overflow V=1
BVC Branch if No Overflow V=0
BLT Branch if Less Than N XOR V=1
BLE Branch if Less Than or Equal Z=1 or
N XOR V=1
BGE Branch if Greater Than or Equal Z=1 or
N XOR V=0
BGT Branch if Greater Than N XOR V=0
BLS Branch on Low or Same Z=1 or
C=1
BHI Branch if Higher Z=0 and C=0
BRN Branch Never NOP
BRA Branch Always Unconditional

Hinks and Kinks 8-3
What is the BRIN?

The BRN, or Branch Never, is not a joke. It is the same as a "NOP”
instruction that does nothing except take up space. The BRN takes
up 2 bytes and the LBRN takes up 3 bytes. The NOP uses a different
“opcode” and takes up 1 byte. All three instructions leave the

74

Relative Branches, Conditional and Unconditional 8

Condition Codes unchanged and do not modify any cpu registers or
memory locations. Why use these 3 NOPs? As "time wasters” in
timing loops or as “padding” for possible “patches™ to object code at
a later tume,

The above list needs some explanation. The conditional branches are usually
used after a CMP or SUB. When used this way it's important to determine
whether you're comparing two absolute numbers or two two's complement
numbers.

Here are the Branches to be used for comparing two absolute (unsigned)
numbers:

Branch For Use
A<B BLO
A<=B BLS
A=B BEQ
A>=B BHS
A>B BHI
A< >B BNE

Here are the Branches to be used for comparing two signed (two’s comple-
ment) numbers:

Branch For Use
A<B BLT
A<=B BLE
A=B BEQ
A>=B BGE
A>B BGT
A< >B BNE

Note the BRA instruction in the main list. This is a Relative unconditional
branch that should usually be used in lieu of the JMP instruction, subject to
the restrictions we're going to discuss in the next topic. Also note the "BRN'
Branch Never, an instruction that is the same as a “"do nothing™ or "NOP”
(no operation) instruction.

Limitations of BRs

There is one slight hitch in using BRs. As there is only one byte for the
address, the jump “range” is limited. You know that in an 8-bit two's
complement number we can hold values of -128 through +127. As the second
byte is the "relative” jump address in two's complement form, we can
therefore only jump 128 locations back and 127 locations forward.

75

8 Relative Branches, Conditional and Unconditional

And don't forget that those numbers are referenced to the Program Counter,
which points to the instruction after the BR. Referenced to the BR, then, we
can only jump back 126 bytes or forward 129 bytes.

If we try to use a BR and jump “out of the range,” EDTASM+ will detect the
error and give us an error message of ‘BYTE OVERFLOW. What can we do
about this situation?

The Long Branch is Not a Fort Worth Ranch

Each of the Branches discussed above has an alternate form, the "Long
Branch!" This form is shown in Figure 8- 1. The Branch is still "Relative” to
the contents of the Program Counter, but now there are -1 bytes instead of two
in the instruction. If we were to use a Long Branch BCS in the square root
program, we'd see the listing shown in Figure 8-5.

BCS LBCS IN ACTION BUT
NOT FORMAT

BCS

BYTE @ BYTE 1
[$25 DISPLACEMENT

THIS BYTE CHANGES
FOR CONDITION

Lacs

BYTE @ BYTE 1 BYTE2 |, BYTE3

[s10] ss] DISPLACEMENT |
T

THIS BYTE CHANGES THIS BYTE
FOR CONDITION CONSTANT

Figure 8-4. Long Branch Format

20100 » RELATIVE BRANCHES

B FC 3000 dB11@ RELJRS 1.DD +3000 LLOAD GOUARIE

0995 &8E FFFF ralra bl "} LDX #-1 CLEAR SQUARE ROOT

2998 108E 0001 oY1 L DY #1 INTTTALLIZE ODD INTEGER
P79C 10RF 222z PA140 aTYy 3000 STORE 1IN MEMORY VARIARLE
29A0 30 21 20130 RFL.O1O 1.EAX 1, X SOUARE ROOT+1

Q9Az 31 3E 2160 LEAY -y oDpD INTEGER I

A9A4 18RF 3002 20170 STY $300 2 STORE ODD INTEGER

agAR F3 300z Po180 ADDD v SeUARE- ODD INTEGER

@a9AR 1025 FFF1 aAB190 LBCS RELB1D 1.00P TF NOT MINUS

DYAF BF 3R el 81X $300% STORE SOUARE ROOT

e 7E s =l
opea
00320 TOTAL ERRORS

LOOP JMP LMOP 1.OOF HERE
END

LOOP a9e.
RELOLD B9AD
RELJRS Q99X
Figure 8-5. Long Branch Program

76

Relative Branches, Conditional and Unconditional 8

The Branch would be made exactly the same, except that the instruction
would take more time to execute and would take up more space in memory.

Use the Long Branch in place of the BR instruction when the Branch will be
“out of range!’ Don't use a Long Branch if you're uncertain about the range, as
EDTASM+ will let you know during assembly, and you can do a quick edit and
reassembly with a Long Branch in place of the Branch.

Either a Branch or Long Branch, therefore, can be used to Branch anywhere
in memory, based on the condition of the Compare, Subtract, or other
instruction preceding the Branch.

Review

To review what we've learned in this chapter:

® Relative branches are 2 bytes instead of 3 bytes as in the JMP, saving
memory space

® Relative branches use a two’s complement one-byte relative address which
will give the jump address when added to the Program Counter

® There are 17 conditional BRs and one unconditional BRA; the conditional
BRs work with Condition Code settings of various combinations

® The range of a BR is limited to 126 locations back or 129 locations forward
from the BR; this is usually enough

e A Long Branch BR uses a 16-bit displacement to enable relative branches
anywhere in memory; Long Branches can be used for any BR instruction

For Further Study

Branch and Long Branch instructions (Appendix II)

77

KEY CHART — CHAPTER 9

INSTRUCTIONS

ABX +BHS -GtRB8—tBS-
ADCA BITA CLR ot~
ADCB BITB CMPA -tDX
ADDA BtE eMPs thy—
-APPB- -+Btf— €mMPB- LEAS
ADBb- BtO- <mPS- LEAU
ANDA Bto- -omMPy- LEAX
ANDB BiS- cMPRx- LEAY
ANDCC +8+$ SR LSLA
ASLA BLF COMA LSLB
ASLB LBLF COMB LSL
ASL -BMI- com LSRA
ASRA LBMt: CWAI LSRB
ASRB BANE DAA LSR
ASR +8NE DECA MUL
8cC SR DECB NEGA
+BG66- BRL DEC NEGB
BCS BRA- EORA NEG
LBCS- LBRA- EORB AOR
BEQ- BRAN- EXG— ORA
LBEQ LBRA- INCA ORB
BGE BSR INCB ORCC
+B8GE£ LBSR INC PSHS
BG+ BYG- AR PSHU
+B6¥F +B¥6 JSR PULS
B BS- A PULU
LB EBYS- OB ROLA
S~ CLRA—~ DD ROLB

ADDRESSING MODES

DISPLACEMENT INDEXED
AUTO INCREMENT/DECREMENT

INDIRECT
SOPHISTICATED

PSEUDO OPS
EQU ORG
FCB RMB
FCC SET
FDB SETFHBR-

Bold Type = Present Chapter
Regular Type - Future Chapters

Kalic-Type - Past Chapters
78

RORA
RORB

EDTASM+ EDITOR COMMANDS

CreOPY—
BIELEFE— MOYEF WERIFY—
B —NrOMBER— WRIFES

EDTASM+ ASSEMBLER COMMANDS (A)

/AO ABSOLUTE ORIGIN

HIANMEMORYASSEMBEY-

R LNE - RPRINTER-
/MO MANUAL ORIGIN
/NL NO LISTING

EDTASM+ ZBUG

A(SCI) DISPLAY

C(ONTINUE)

—DUSPLAY)-
EWDITOR)

-6t

H(ALF) SYMBOLIC
HNPUTFFBASE—
L(OAD) ML FILE
M(NEMONIC) MODE
N(UMERIC) MODE
O{OUTRUT) BASE

P SAVE ML ON TAPE

BLEGISTFER)-DISPLAY-
S(YMBOLIC DISPLAY)

/NO NO OBJECT
ANSNO-SYMBOLTABLE
/SS SHORT SCREEN
AT ON—ERRORS-

COMMANDS

T DISPLAY-BLOGK

T H HARDCORY BLOCK

U MOVE BLOCK

V (ERIFY) BLOCK

W(ORD) MODE

H—BREAKPOHNF-

YAANK—BREAKROHNF—

S EXAMINE PREGEDING

A EXAMHNENEXTF—

—~ BRANCH INDIRECT

. FORCE NUMERIC

+ FORCE NUMERIC, BYTE
FORCE FLAGS

S EXAMINE

—SHNGLE-STFER-

GENERAL TOPICS

INCREMENTS/DECREMENTS

COMPLEMENTS
LOGICAL OPERATIONS
MULTIPLE PRECISION
DATA VALUES
INDEXING

INDEXING WITH XY
SORTING

SUBROUTINES

STACK OPERATIONS
ROTATES, SHIFTS
MULTIPLES

DIVIDES

DECIMAL ARITHMETIC
BASIC INTERFACING
PASSING PARAMETERS
VARPTR USE

ROM SUBROUTINES
OTHER ADDRESSING
GRAPHICS

SOUND

LARGER PROGRAMS

Chapter 9
Increments, Decrements, Complements,
and Logical Operations

Increments and decrements are used quite often in assembly-language pro-
grams — they add or subtract 1 count. Complements include the COM and
NEG instructions, which take either the "ones” or “"two's” complement.
Logical operations are similar to BASIC ANDs and ORs.

Increments and Decrements

DEC stands for "Decrement,” and INC stands for "Increment.” An increment
adds one to the contents of the A or B registers or memory location, while a
decrement subtracts one from the contents of the A or B registers or memory
location.

Increments and decrements exist because adding 1 or subtracting 1 is a very
common operation in assembly-language code. In the case of using the A
register, for example, it's much better to do an INCA then todoan ADDA #1.
The INCA is a one-byte instruction while the ADDA #1 is 2 bytes in length.

The mnemonics for INC and DEC are shown in this code:

INCA INCREMENT A
INCB INCREMENT B
INC $3000 INCREMENT
LOCATION $3000
DECA DECREMENT A
DECB DECREMENT B
DEC $3000 DECREMENT

LOCATION $3000

Eight-bit increments and decrements affect the Condition Codes about the
same way that ADDs and SUBs affect the CCs. A zero result after a decre-
ment sets the Z Condition Code, for example. We said "about the same way”
because neither the Carry (C) Condition Code nor the Overflow Condition
Code (V) are affected after an increment or decrement; they remain the same
as they were before the INC or DEC.

The LEA for 16-Bit Registers

What about 16-bit registers such as X and Y? Can they be incremented or
decremented? There's a special instruction for doing this and other manipu-
lations on 16-bit registers called "Load Effective Address;” or LEA. The LEA
mnemonic is suffixed by either an S, U, X, or Y for four operations on the
four registers:

79

9 Increments, Decrements, Complements, and Logical Operations

LEAS

LEAU

LEAX

LEAY
LEA instructions work like this: The contents of either the S, U, X, or Y
register is added together with an 8-bit or 16-bit signed displacement for the

LEA instruction in a manner very similar to relative branches. The result is
loaded into the specified register. This is harder to describe than use:

LEAX -1,X Add (X)+(-1), result to X
LEAY -1,X Add (X)+(-1), result to Y
LEAS -38 Add (S)+(-3), result to S
LEAX +10000,X Add (X)+(+10000), result to X

Do you see how this works? In the simplest case, it's a replacement for INC
and DEC for a 16-bit register, as in LEAX -1,X, which decrements X. In a
more complicated form, it can add up to $FFFF or subtract up to -$8000 from
a 16-bit register and put the result into the same or different 16-bit register.

The only Condition Code affected is Z, when an LEAX or LEAY is done. For
all other LEAs the Condition Codes remain unchanged.

We'll see more use of this in later chapters.

Hints and Kinks 9-1
More on the LEA Instruction

The predecessor of the 6809, the 6800 microprocessor, had an
“increment index” and "decrement index” instruction to modify the
contents of X by +1 or -1. The 6809 goes another order of magnitude
better than this and allows you to increment or decrement X, Y, S, or
U by any 16-bit value.

The number of bytes in the "displacement” is dependent upon the
size of the displacement. If the displacement is less than +128 or
greater than -128, EDTASM+ generates a one-byte displacement. If
the displacement is greater than +127 or less than -128, EDTASM+
generates a 2-byte displacement. You, as a programmer, don’t have
to worry about the instruction size — the assembler will take care of
it automatically.

The NEG and COM Instructions

The NEGate and COMplement instructions are two instructions that oper-
ate on data in the A or B registers or an 8-bit memory location.

The COM instruction takes the contents of the A register and “one’s com-
plements” it, by changing all ones to zeroes and all zeroes to ones.

80

Increments, Decrements, Complements, and Logical Operations 9

Suppose that the A register contained
00111111
After a COMA instruction had been done, the new contents would be:

11000000

The COM instruction changes the N (negative) and Z (Zero) Condition
Codes on the result of the Complement. If 11111111 was complemented to
00000000, for example, the Z Condition Code would be set.

The NEG instruction takes the contents of the A or B register or a memory
location and “two’'s complements™ it, changing all ones to zeroes and all
zeroes to ones and adding one. We've already seen how the two's comple-
ment works in an earlier lesson. The NEG simply performs the two's
complement conversion automatically. The effect of this is to "negate” a
number, changing a positive number into a negative number and vice versa.

Suppose that the B register contained:
00111111, or decimal 63

After a NEGB, the A register would contain:
11000001,

or decimal -63 (in two’s complement).

The NEG sets the Condition Codes just as in a SUB instruction. If the result
was 10000000, for example, the Z Condition Code would be reset (NE) and
the N Condition Code would be set (MI).

The COM and NEG are used infrequently compared to adds, subtracts,
decrements, and increments.

Logical Operations

The 6809 has three instructions that perform logical operations, the OR,
AND, and exclusive OR (EOR).

ORs
If you've done some BASIC programming, you'll be familiar with the first
two logical operations, and the EOR is simply a variation.

The AND and OR can operate on the A or B registers and also the
Condition Codes. The EOR works only on A or B.

An OR takes the 8-bit value in A, B, or the CC and ORs it with the second
operand from memory or an immediate operand. An OR operates on a
“bit-level” — one bit at a time with no bit affecting any other bit. For each bit:

81

9 Increments, Decrements, Complements, and Logical Operations

0 OR 0=0
0 OR 1=1]
1 OR 0=1
I OR 1=1
A bit in the result is set, then, when either one OR the other bit OR both is
set. The result of a typical OR might be:
00111010
OR 01010111

(URRRERE!

Only in the case of the most significant bit was the result bit not 0, and that
was because both operand bits were 0.

ORs are typically used to set a single bit in the middle of other bits. Suppose
you wanted to set bit 5 of the A register. (Bit positions are 7,6,5,4,3,2, 1,and
0 from left to right.) One way to do it would be:

ORA $20 SET BIT 5

ANDs
An AND takes the 8-bit value in A, B, or CC and ANDs it with the second
operand. An AND also operates ona "bit-level” — one bit at a time with no
bit affecting any other bit. For each bit:

0 AND 0=0

0 AND 1=0

1 AND 0=0

1 AND 1=1]

A bit in the result is set, then, when one bit AND the other bit are set. The
result of a typical AND might be:

00111010
AND 01010111

00010010

The only result bits that were set were ones in which both operand bits were
ones.

AND:s are typically used to “mask” data. Suppose you wanted to find the
setting of bits 1 and 0 of the B register. One method would be:

ANDB #3 GET BITS | AND 0

At the end of these two instructions, B would contain 000000XX, where XX
are the settings of bits [and 0 in the B register. The bits tn bit positions | and
0 "fell” through on the AND, and the other bits were "masked out™:

82

Increments, Decrements, Complements, and Logical Operations 9

01010010 (B register)
AND 00000011 (AND value)

00000010 (result of AND)

EORs

An EOR takes the 8-bit value in A or B and EORs it with the second operand
from memory or an immediate operand. An EOR again operates on a
“bit-level” — one bit at a time with no bit affecting any other bit. For each bit:

0 EOR 0=0
0 EOR 1=1
1 EOR 0=1
1 EOR 1=0

A bit in the result is set, then, when either one OR the other bit but NOT both
bits is set. The result of a typical EOR might be:

00111010
EOR 01010111

01101101

Whenever the operand bits were both Os or ls, the result bit was a zero.

EORS are used infrequently compared to ORs and ANDs. One classic
example of the use of an EOR is to check the sign of a result. Suppose that we
were going to multiply two 8-bit numbers. The sign of the result could be
determined by:

10101010 (-86 decimal)
EOR 01010100 (+84 decimal)

11111110 (EOR result)

The result sign of the EOR is a 1, so the sign of the multiply result willbe a 1,
or negative.

Using ORCC and ANDCC

OR and AND can also be used to set or reset 1 or more Condition Codes.
(Refer to Figure 0-1.)

To set any Condition Code use the OR:

ORCC #1 SET CARRY
ORCC #5 SET ZERO, CARRY

To reset any Condition Codes, use a "mask” type immediate value. To reset
the Carry, for example, use the mask complement of 1, $FE (11111110):

83

9 Increments, Decrements, Complements, and Logical Operations

ANDCC #8FE RESET CARRY
Use a similar type of mask to reset more than one Condition Code:

ANDCC#$FA RESET Z,C (11111010)
A Special AND

There're another two instructions that we should mention here, the BITA
and BITB instructions. These instructions are the same as ANDs for A and B
except that the result is not put back into A and B, but dropped into the bit
bucket. The Condition Codes are set the same as in an ANDA or ANDB.
BITA and BITB can be used with an immediate operand or an operand from
memory.

BITA #5 TEST BITS 2 AND 0 (Z,CC)
BIT $3000 AND B WITH (83000) FOR TEST
Review

To review what we've learned in this chapter:

e Increments and decrements add or subtract | from A or B or from a
memory location

® Condition Codes are set for 8-bit increments and decrements, except for H

and C

® The LEA instruction adds or subtracts a signed displacement to the X, Y, U,
or S register

® The COM “complements” data, changing all Os to s and all Is to Os
® The NEG rakes the two's complement, or negation, of data

® ANDs, ORs, and EORs work with one operand in A, B, or CC (AND or
OR) and one from an immediate operand or memory

® ANDs set each result bit to a [only if both operand bits are 1
® ORs set each result bit to a | if either operand bit is a 1

® EORs set each result bit to a 1 if either but not both operand bits is a |

84

KEY CHART — CHAPTER 10

INSTRUCTIONS

PSHS
PSHU
PULS
PULU
ROLA
ROLB

ERERTR L EERERRRLREREEAR B

TEIRTRTBPRETEP " ES o> EFFEFFEE

ADDRESSING MODES

SPLACEMENT INDEXED
ITO INCREMENT/DECREMENT

DIRECT
PHISTICATED
PSEUDO OPS
0] ORG
) RMB
C SET
B SEFOR—
d Type Present Chapter

jular Type Future Chapters
icType Past Chapters

SUBH6—-
SWI
SWI2
SWI3
SYNC

FFR-
FSFA—

i

EDTASM+ EDITOR COMMANDS
ASSEMBHES HASERFH- REPEACE
SHOPYS —HBAD)—

D ELETE— OV — MR-
S N MBER) WRITEL
—HHND —PHRHA— ZBHGH

EDTASM+ ASSEMBLER COMMANDS (A)

/A0 ABSOLUTE ORIGIN
HMAANAAH I ORY-ASSEMBLY—
RN RRANTR-

/MO MANUAL ORIGIN

/NL NO LISTING

/NO NO OBJECT
MNEAOSYMBOL TABLE.
/SS SHORT SCREEN
AT ONERRORS—

EDTASM+ ZBUG COMMANDS

A(SCIl) DISPLAY

C(ONTINUE)

BHSREAY S
~HBHFOF—

G165

H(ALF) SYMBOLIC
L(OAD) ML FILE
M(NEMONIC) MODE
N(UMERIC) MODE
OLOUTRUT) BASE-
P SAVE ML ON TAPE

AR EHS T R} DHSREAY-
S(YMBOLIC DISPLAY)

FBHSPEAY-BEOEK

FH HARBCORY-BLOCK —
U MOVE BLOCK

V (ERIFY) BLOCK

W(ORD) MODE
H—BREAKFPOHNTF—

—EXAMINERREGEDING-—
~—EXAMNENEXT—
- BRANCH INDIRECT
; FORCE NUMERIC
+ FORCE NUMERIC BYTE
FORCE FLAGS
~—EXAMINE-
—SINGHE-STFER

GENERAL TOPICS

LR HEGIS T RS
BAFATFOREGISTFRERS
—+OADHNGAND-STORING—

AU TION-AND - SUBTRACTION

COANDITION CODES
SYMBOLIC ADDRESSING
HHMRS—BRANCHES —
RELATHE-BRANGHES—
NG MENTFSHOECREMENTS-
COMPLEMENTS—

O GHCAL-ORERATHONS-
MULTIPLE PRECISION
DATA VALUES

INDEXING

INDEXING WITH XY
SORTING

SUBROUTINES

STACK OPERATIONS
ROTATES. SHIFTS
MULTIPLES

DIVIDES

DECIMAL ARITHMETIC
BASIC INTERFACING
PASSING PARAMETERS
VARPTR USE

ROM SUBROUTINES
OTHER ADDRESSING
GRAPHICS

SOUND

LARGER PROGRAMS

85

86

Chapter 10
Using the Carry for Gobs of Precision

You might be wondering about the value of the Carry Condition Code. If you
were, we'll show you in this chapter how that innocuous Carry can be used in
“multiple-precision” operations to string together 8-bit adds and subtracts
that can process infinitely large numbers. We'll look at ADC and SBC, adds
and subtracts with “Carry” These instructions are very similar to the standard
ADDs and SUBs, except that the state of the Carry Condition Code is added
or subtracted in. ADC and SBC allow "multiple-precision™ operations which
can extend the range of processing to any size number, not just 8 and 16 bits.

Multiple-Precision Numbers

A multiple-precision number is a fancy term for any integer number format
that is larger than the size the microprocessor can handle with its built-in
instructions.

In the 6809, we can add 8 and 16-bit operands. The maximum number that
can be represented in 8 bits is 255 (unsigned), while the maximum number
that can be represented in 16 bits is 65,535 (unsigned). What about large
numbers?

One way to handle large numbers is to use “floating-point” numbers.
Floating-point representation is what BASIC uses to handle single-precision
and double-precision numbers. Floating-point operations are rather com-
plex, however, and beyond the scope of this book.

Hints and Kinks 10-1
Microcomputer Math

See my Howard W. Sams book “"Microcomputer Math” for more on
floating-point number format in microcomputers.

There's no reason we can’t handle any size number in the 6809. We may have
to string the numbers together as a series of bytes, but we can easily handle
4-byte or 8-byte numbers.

Hints and Kinks 10-2
How Many Bytes for How Much Precision?

As a rule of thumb, one decimal digit can be held in 3 1/2 bits. In 8
bits, for example, you can hold decimal values from 0 through 255, or
about 2.55 decimal digits (8/3.5=2.28). In 16 bits you can hold
decimal values from 0 through 65,535, or about 4.6 decimal digits
(16/3.5=4.57).

In 4 bytes, then, you'd have 32 bits, or about 32/3.5=9.2 decimal
digits. In 8 bytes you'd have 32/3.5 or about 18 decimal digits. You

87

1 O Using the Carry for Gobs of Precision

can see that it doesn’t take too many bytes to get a great deal of
precision.

Look at Figure 10-1. In this figure, we've got a 4-byte number. In four bytes,
we can represent 2 to the 32nd power or about 4,295,000,000. That's not an
unreasonable number range to work with, even for Federal budget deficits.
As a matter of fact, we can get more precision than we can get in single-
precision BASIC. Note that I said more precision, which essentially means
more digits; we still don’t have the range of BASIC variables which also allow
exponents such as 1.234 X 10 to the 14th power (1.234E+14).

o

s

« ©

-3 - @©

3 28 @

~ ~ @ 2 3

4 N~ w <

- o w o~ ©

o T © o &

i - I)

i i 8 I I N S ST 3
ST SR SR WA W VRN Wt Wiy SN WY NN SN TN TN ot Mt AN N NS T TN N D T Wt B I

rl T 1 L T T T 1 T T L T T L T | S | T T T
1 | 1 i 1 i 1 J W | L 1 1 |] 1 i 1 1 1 1 N I
Tt T Tttt +— 111 N A |

BYTE @ BYTE 1 BYTE 2 BYTE 3

Figure 10-1. Four-Byte Multiple Precision Number

If we want even more of a range, we can go to a larger number of bytes, but
we'll consider 4 bytes here, for convenience.

The format of multiple-precision numbers is about the same as 8- or 16-bit
numbers. The first bit may or may not be a sign bit, depending upon whether
you're working with absolute or two's complement numbers. The only real
difference is that the number is spread out among several bytes, and that
adds, subtracts, and other operations have to be handled in 8-bit or 16-bit
“chunks”

Suppose that we want to add the numbers shown in Figure 10-2. The two
4-byte numbers here represent 8,000,001 and 8,777,215. The first add adds
the bytes $01 and $FF, hexadecimal. The next add adds the next two bytes and
any carry from the least significant byte. The next add adds the third bytes of
the operands and any carry from the second add. Finally, the last add adds the
fourth bytes of the operands and any carry from the third add.

88

Using the Carry for Gobs of Precision 1 O

ADCA ADCA ADCA ADDA
HERE HERE HERE HERE

fo 0 0o oo 0 0o of] [o 11 11 01 0] [0001 001 0] [0000c0o0 01 (,;'702?’2‘21)

Looooooo] [170000101]b11o11o1]E11111ﬂr8'771;€::;

e £NE {_\c 16,777,216
[0 0 00000 1] [000000 00| [0000000 o] [0000000 0] (o100000

¥ \C CARRY TO NEXT BYTE

Figure 10-2. Adding Multiple Precision Numbers

The first add is our old friend ADDA, an 8-bit add. The remaining three
adds are ADCA, or Adds with Carry so that any carry from the low-order is
added in.

Eight-Bit Add With Carry

The 8-bit ADCs operate very similarly to the standard 8-bit add. An imme-
diate value or contents of a memory location is added to the contents of the A
or Bregisters, with the result going back into the A or B register. However, in
addition to the second operand being added to the accumulator, the current
state of the Carry Condition Code is also added in. As the Carry Condition
Code may be set or reset, the add results in either the same sum as a normal
ADD, or a result that is one greater than the normal ADD.

Let’s look at a program that performs the 4-byte multiple-precision add that
we diagrammed above:

00102 * ADC FOR MULTIPLF-PRECISION 4~BYTE ADDS

989 8 3003 a011@ MPADDS LDX #E3003 POINT TO OP1+3 RYTES
Q9 C 1@8E 3007 010 LDY #$3007 POINT TO OPZ+3 BYTES
@9Ca Cb4 24 20130 LLDE #4 L.OOP COUNTER

P9Ce 1C FE 20142 ANDCC HE$FE CLEAR CARRY

APC4 Ab 84 2150 MPARLA LDA s X GET OPERAND 1

29CsH A9 A4 oR162 ADCA Y ADD IN OPERAND =
@a9¢c8 A7 34 0170 STA 3 X STORE REGULT

QCA 30 1F a0180 LEAX -39 X DECREMENT 0OP1 PNTR
@Ccc 31 3F 201790 LEAY -1.Y DECREMENT 0OPw PNTR
@9CE &=A 2000 DECP DECREMENT COUNT

@BICF 26 F3 BNE MPA@1Q LLOOP IF NOT 4
Q9D1 7€ @29D1 L.OOF JME LOOP L OOF HERF
20006 20230 END

Qooe@ TOTAL ERRORS

Loop 29D1
MPARID QYC4
MPADDS @9
Figure 10-3. Multiple-Precision Add Program
If you'd like to assemble the code, you'll be able to see what's happening very

easily.

89

1 O Using the Carry for Gobs of Precision

The four bytes at $3000 through $3003 hold the first operand. The four bytes
at $3004 through $3007 hold the second operand. After the add is done, the
result will replace the first operand at locations $3000 through $3003. A
suggested first set of operands is:

Operand | ($3000-$3003) $00 $80 $27 $FF +8,398,847 decimal
Operand 2 ($3004-$3007) $83 $A0 $7A $11 -2,086,634,991 decimal
Result ($3000-8$3003) $84 820 $A2 $10 -2,078,236,144 decimal

If you've assembled the program, use the slash command of ZBUG to set up
the operands. Breakpoint at LOOP and then execute from MPADDS.

When the breakpoint at LOOP is reached, you can use the ZBUG T command
to look at the results in the operand 1 area ($3000 through $3003). Use
T3000 3003.

The program works like this: X is used as a pointer to the first operand area.
Since we'll be adding bytes from least significant byte to most significant, X
is set to point to the last byte of the first operand.

Y is used as a pointer to the second operand area. It is initially set to point to
the last byte of the second operand.

The B register is used as a loop counter for the 4 adds that will take place.

The loop starts at MPAO10. Each time through the loop, X and Y point to the
next set of bytes in both operands.

The A register is loaded with the first operand byte by the LDA X, which
uses the X register to load the byte from the operand 1 area. The ADC
instruction then adds the second operand byte, using the Y register as a
pointer. The result in A is then stored back in the first operand area. The
ADC adds the two bytes, but also adds in any Carry from the previous add.

Important note: The only instruction affecting the Carry in the loop is the
ADC, therefore the Carry always holds the Carry from the last ADC.

Hints and Kinks 10-3
When Is the Carry Affected?

You can easily see for what instructions the Carry is affected by going
down the list of instructions in Appendix II. The Carry is changed
for adds, subtracts, compares, complements, negates, and shifts,
including rotates. The Carry Condition Code, then, is very much
geared to "arithmetic operations.”’

The Carry before the first add was reset to 0 by the ANDCC instruction,
which used the immediate value of $FE as a mask to reset the Carry. The first
ADC, then, uses a carry of 0.

90

Using the Carry for Gobs of Precision 1 O

Experiment with different 4-byte operands, and you'll get a good idea of how
this multiple-precision add works.

Eight-Bit Subtracts With “Borrow”

The 8-bit subtract, SBC, is identical to the 8-bit ADC, except for the actual
operation, of course. The SBC again will work only with the A or B registers,
and not with any 16-bit register.

In the SBC, any Carry from a lower order is actually a "Borrow," but the
borrow is termed a Carry for convenience.

To see that the subtract does indeed work look at the program below. It
duplicates the earlier program, except that the ADC is replaced by an SBC.
The operands are 4-byte operands in the $3000 through $3007 area as
before.

2010 * SBC FOR MULTIPLE-FRECISION 4~BYTE SURTRACTS

279C0 BE 3003 20110 MPSURS 1.DX #4300.3 POINT TO OP1+3 RBYTES
DYC3 10BE 3007 Ba1:R LDy #$30D7 POINT TO OPZ+3 BYTEL
BIC7 Cb6 Q4 20130 L.DE #4 LOQOP COUNTER

BYCT 1C FE 20140 ANDCC HHFE CLEAR CARRY

@7Ce Ab 84 20150 MPS@1@ LDA s X GET OPERAND 1

DICD Az AL 20160 SRCA 2 Y SURTRACT OPFRAND ¢
@ICF A7 84 o170 STA » X STORE RFSULLT

B9D1 30 iF pB18@ LEAX -1sX DECREMENT OP1 PNTR
@9D3 31 3F 20190 LEAY -1y DECREMENT OPZ PNTR
29D5 5A 2L pe]] DECE DECREMENT COUNT
@9D6 26 F3 ENE MPSA1@ LOOP [F NOT 4

o9D8 7E 29D8
2000
20200 TOTAL ERRORS

L QOP JMP LOOP LOOP HERE
END

LOOP a9Dn8
MPS@1@ BO9CE
MPSUBS 09C0

Figure 10-4. Multiple-Precision Subtract Program
It you assemble the program and exccute it as before try these operands:
Operand 1 ($3000-$3003) SO0 $80 $27 SFF +8,398 817 decimal
Operand 2 (53004-83007) $83 SAO0 $7A S11 () -2,086,034,991 decimal
Result ($3000-53003) §7C SDF SAD SEE +2,095,033 838 decimal

The result will be in the $3000 area as before. These operands cause a borrow
from the next higher byte, and you can see how the SBC uses this borrow in
the subtract of the current byte.

We'll leave it up to you to experiment with this multiple-precision subtract
with other operands.
Other Multiple-Precision Operations

You've seen in the above discussion how almost any size number can be
handled for adds and subtracts by using ADC and SBC. But what about
multiplies, divides, and other operations? Generally these are quite a bit

91

1 O Using the Carry for Gobs of Precision

more difficult. We'll be looking at some multiply and divide programs in a
later chapter and we'll discuss some possibilities for multiple-precision
operations in that chapter.

Review
To review what we've covered in this chapter:

® Multiple-precision numbers are numbers that use multiple bytes to pro-
vide a larger number range than is possible in 8 or 16 bits

® Multiple-precision numbers can be absolute or signed (two's complement)
and resemble 8- or 16-bit numbers of these types

® Eight-bit adds with Carry operate similarly to the normal 8-bit adds,
except that the current state of the Carry is added in

¢ Light-bit subtracts with Carry operate identically to an 8-bit ADC, except
that a "borrow” is subtracted from the A register along with the second
operand; the borrow is held in the Carry Condition Code

For Further Study
Look at the Condition Code settings for the ADCs and SBCs (Appendix II)

92

KEY CHART — CHAPTER 11

INSTRUCTIONS
tBHS- —CERB—EDS-

EDTASM+ EDITOR COMMANDS
ROL ASSEMBEE) HNSERH REPLACES

= BHA CLR +B55- RORA &{oRY) LLOADS- THARBCORY)
B BB~ GMPA- DX~ RORB -BtEEEFFE+ —MHOVE) RS-
+~ Bt €MPB —+B¥— ROR —£H+H B RS
— +BLE- -CMPD- +EAS RTI —FHIND— —PHHNF— ZBUGH-
B— BEO— MRS~ —LEFAL— RTS —HARBGORY) -QfHF—
b 80~ EMPY —+EAX— SBGA-
g; S omex M 2P EDTASM+ ASSEMBLER COMMANDS (A)
N "’BfS'_BH__ —W-GGMA— LaLB ‘SE*‘S#_ /AO ABSOLUTE ORIGIN /NO NO OBJECT
3 +B8tF— -€OMB— LSL S¥B- "! ’p ’!",,,“E’En“q’e,’,i;’ E’q‘SSE’”'BH /78"35 S"HGOSRT’ “"SBCQREEEMNBEE‘
BM— COM- LSRA -§FB~ o MANUAL ORIGIN WA T—ON—ERRORS—
A +BM— CWAI LSRB -S¥S /NL NO LISTING
B BNME— DAA LSR ST
—+BNFE -BEGA MUL -SF%¢
- BPE— BEEB NEGA ST EDTASM+ ZBUG COMMANDS
6 +BPi— -BES NEGB SUBA- A(SCIl) DISPLAY FDISPLAYBHOCHK—
- -BfA- EORA MG~ SUBHE- BHYFEMOEBE ~FHHARBEORPYBLO6K
& +BRA- EORB- NOR -suysp— C(ONTINUE) U MOVE BLOCK
- BRN- £X6- -ORA— SWI BHEPEAY) V (ERIFY) BLOCK
i 1BAN NEA -ORB— Swi2 TEDIFORy W(ORD) MODE
BSR NEB- BREE— SWI3 Gro H—BREAKPOINT-
E LBSR -+NG— PSHS SYNC H(ALF) SYMBOLIC YAANKF—BREAKPOINT
BYE~ MPA— PSHU FFR— HNPUTSBASE— A+ EXAMINERRECEDING—
W +B¥6- JSR PULS -FSFA- L(OAD) ML FILE A EXAMNE NEXTF
- B —+BA— PULU =FS¥8— M(NEMONIC) MODE — BRANCH INDIRECT
W +8¥S— —+BB— ROLA -FS¥ N(UMERIC) MODE . FORCE NUMERIC
b -6tRA— —+BS5— ROLB + FORCE NUMERIC,BYTE
P SAVE ML ON TAPE . FORCE FLAGS
—REGISTER}DISRLAY- ——EXAMINE
ADDRESSING MODES S(YMBOLIC DISPLAY) — SINGLE-STFEP

%%éﬁ

PLACEMENT INDEXED
O INCREMENT/DECREMENT
IRECT

PHISTICATED
PSEUDO OPS
U ORG
B RMB
C SET
B SEFBP—

{ Type = Present Chapter
ular Type = Future Chapters
p-Fype = Past Chapters

GENERAL TOPICS

CRUREGISTERS SUBROUTINES
-DATATO REGISTERS STACK OPERATIONS
HOADINGAND-STORING ROTATES, SHIFTS
ABDHHON-AND-SHBFRAGHON MULTIPLES
-CONBHHON-GODES— DIVIDES
S¥MBOHGADBRESSING- DECIMAL ARITHMETIC
~HIMRSBRANGHES - BASIC INTERFACING
FRELAFVEBRANGHES PASSING PARAMETERS
INCREMEMNFSDECREMENTFS- VARPTR USE
COMPLEMENTS- ROM SUBROUTINES
LOGHGAL—ORERATIONS— OTHER ADDRESSING
MEHFRLERRECISION- GRAPHICS

DATA VALUES SOUND

INDEXING LARGER PROGRAMS
INDEXING WITH XY

SORTING

93

94

Chapter 11
Generating Data Values and
Simple Indexing

In this chapter we’ll discuss how to generate tables of data by using the FCB
and FDB assembler “pseudo-ops” We'll also look at some of the simple
“indexing” techniques which enable us to access tables. Another pseudo-op
allows us to construct assembly-time strings of ASCII data similar to BASIC
strings.

A List of Data

The simplest form of a table is simply a “one-dimensional” list of data,
similar to a one-dimensional BASIC array. Let’s build two versions of a data
list, one with numeric data, and one with “alphanumeric” (text) data.

A Numeric Table Lookup

Suppose that we wanted to convert from degrees Centigrade to degrees
Farenheit. One way to do it would be to use the formula:

F=(9/5)%C+32

where Cis the temperature in degrees Centigrade and F is the temperature in
degrees Farenheit. We could do a multiply, a divide, and an add, but another
alternative would be to use a "look-up” table of Farenheit values. This table
would appear as in Figure 11-1.

CENTIGRADE
0 32
1 34
2 36
3 37
4 39
5 a1
6 a3
7 as TABLE ENTRIES
8 46 ARE CORRESPONDING
DEGREES FARENHEIT
A >
95 203
96 205
97 207
98 208
99 210
100 212

Figure 11-1. Lookup Table for Centigrade to Farenheit
95

1 1 Generating Data Values and Simple Indexing

The table is “accessed” by using the number of Centigrade degrees as an
“index"” value. The table starts with 0 degrees Centigrade and ends with 100
degrees Centigrade. To find the Farenheit degrees for 20 degrees Centigrade,
for example, you'd look up the 21st “entry” in the table.

How would you construct such a table using Color Computer assembly
language? To see the answer, look at this code:

* LOOKUP TABLE FOR CENTIGRADE TO
FARENHEIT CONVERSION

* ONE ENTRY FOR EVERY DEGREE CENTIGRADE

CTOFTB FCB 32 0 DEGREES C
FCB 34 1
FCB 36 2
FCB 37 3
FCB 39 4
FCB 41 5
FCB 43 6
FCB 45 7
FCB 46 8
FCB 48 9
FCB 50 10
FCB 52 11
FCB 54 12
FCB 55 13
FCB 57 14
FCB 59 15
FCB 61 16
FCB 63 17
FCB 64 18
FCB 66 19

If you assemble this code, you'll see the listing shown in Figure 11-2, a list of
20 bytes, ranging from 32 ($20) through 66 ($42).

96

Generating Data Values and Simple Indexing 1 1

PB10® * TABLE LOOKUP FOR C TO F CONVERSION

BA4E BE BASA 00110 TABLOK LDX #CTOFTE LOAD TABLE START
BA4E Fb6 3000 oo120 LpR $3000 GET DEGREES C
@AS51 3A 20130 ABX ADD TO START
BASZ Ab B84 00142 LDA ' X GET DEGREES F
BAS4 B7 3001 20150 STA 3001 STORE RESUL.T
BA57 7E BAS7 22168 LOOP JMP LOOP LOOP HERE

BB170 * LOOKUP TABLE FOR CENTIGRADE TO FARENHEIT
20180 * ONE ENTRY FOR EVERY DEGREE CENTIGRADE

BASA 20 P0190 CTOFTE FCB 32 ® DEGREES
BASE 22 20200 FCe 34 1
DASC 24 20210 FCB 36 2
BASD 5 ol] FCe 37 3
BASE 27 02230 FCe 39 4
DASF 29 20z40 FCB 41 5
DALD i) 20250 FCB 43 6
2A61 =D 20260 FCe 45 7
BALZ ZE 20270 FCe 46 8
BAL3 32 2280 FCE 48 8
PAL4 2 20290 FCB 50 10
BALS 34 2380 FCB 52 11
DALS 36 20310 FCB 54 12
BAL7 37 28320 FCB 55 13
0AL8 39 29330 FCe 57 14
PALD 3e 20340 FCe 59 15
BALA 3D 20350 FCe 61 16
QALE 3F 20360 FCe 63 17
DAGLC 40 370 FcCe 64 18
PALD 42 20380 FCB =3 19
voeo Pe390 END

2120B TOTAL ERRORS

CTOFTE OAS5A
LOOP @As57
TABLOK QA4E

Figure 11-2. Table Lookup Program 1
The FCB Pseudo-Op

The FCB is an assembler “pseudo-op” that does not generate an instruction,
but generates "data” instead. Unlike BASIC, though, we have to be careful
where we put the data. In BASIC the DATA statements are simply “in-line”
with other BASIC statements. In assembly-language we can put data any-
where, but have to make certain that the program jumps around them.

You can see from the above code that you can use a label on a data area as well
as an instruction. This allows you to symbolically reference the data, which, in
this example, we've called CTOFTB, or "Cto F Table!" It also allows ZBUG to
reference the data.

Each “entry” in this table is one byte long. Given a temperature reading in
degrees Centigrade, we can easily find the equivalent degrees Farenheit by a
“table lookup.”

One program to do this is shown in the "code” of Figure 11-2.

This program takes a value in degrees Centigrade from memory location
$3000, uses it as an index value, and "looks up” the corresponding degrees
Farenheit in the CTOFTB.

X is used as a pointer, and is loaded with "CTOFTB." This symbol is the same
97

1 1 Generating Data Values and Simple Indexing

as any other symbol used with an instruction. It is the symbolic name of the
location, in this case a data location. The corresponding address of CTOFTB
is put into the instruction as immediate data, as you can see in Figure 11-3.

PD1V@ * TABLE LOOKUP FOR C 70 F CONVERSION
BA4R BE BASA PA11@ TABL.OK L.DX #CTOFTE LOAD TABLE STARI
BA4E F6 3000 o01z@ LDE 4000 GFT DFGREES C

BASA =@ D219 CI1OFTE F(B oy @ DEGREES

Figure 11-3. Immediate Data Address

The B register is then loaded with the degrees Centigrade value from location
$3000. This value is the "index value” for the table lookup. This value is then
added to the table start value in X by the ABX instruction. The result in X
points to the location in the table where the Farenheit byte will be found.

We haven't mentioned the ABX instruction before. It is a special add that
adds the contents of the B accumulator to the contents of X and puts the
result in X. No Condition Codes are affected. ABX is geared to the exact
operation we're doing here.

The A register is then loaded with this value, and it's then stored in location
$3001.

If you want to see how this works, assemble and execute the program as
you've been doing in previous chapters, first putting a legitimate value in
$3000 as the degrees Centigrade value and looking for the Farenheit result in
$3001.

Entries of More Than One Byte

The table above was one of the simplest tables we could work with. Let’s look
at a more complicated table, one that uses “entries” greater than one byte,
and also uses several “fields”

16 BYTES PER ENTRY

7 I] SR N I [S N B
TRY1 [ptes|w ™M & B A B B A G.E B b .6 b
= e et B e T s
2 1o+12 G+E%O+L%G%Elfbj15%0%O]LLgEJfﬁlTﬁ
3 |eF2lB L A I S E B P A S C A L b
T T T T T T L T T T 1 T T T'S
4 1Al A L A N B T U R I N G 6 b
I T T T T T L T T 1 1 T T
FIELD FIELD 2:
1: SOCIAL NAME
SEC # (14 BYTES LONG)
(2 BYTES
LONG)
- BLANK

Figure 11-4. Table with Large Entries - Structure
98

Generating Data Values and Simple Indexing 1 1

Each entry is made up of two “fields.” A field is a subdivision of a "record,’ as
we saw in an earlier lesson. The second field holds the name of the computer
pioneer, and the first field holds his Social Security Number (they used
shorter numbers in those days, of course). Each field is a "fixed length;” the
second field is 14 bytes long, and the first field is 2 bytes long. The total length
of each entry is 16 bytes.

This concept of entries in a table with fields within the entry could be
expanded to tables with hundreds of entries and with many fields. For
example, you might have a table of employees that had one field for an
employee name, another for an employee number, another for marital status,
and so on. Each entry in the table might be a hundred bytes long or so.

Why did we make the fields “fixed length™ above? In fact, we could have used
a “variable length” field, which would make the entries variable length also.
Fixed-length entries are easier to work with, though, even though they do
take up more space.

The FDB Pseudo-Op

This is the first time we've used the FDB pseudo-op. You'll recall that a
pseudo-op is a command to the assembler and not an instruction mnemonic.

The FDB is used to build data, just as the FCB was used in the previous
example. In this case the data for the FDB represents a 16-bit value. Instead
of one byte being generated, as in the case of the FCB, two bytes will be
produced. The mnemonic stands for "Form Double Byte!

Hints and Kinks 11-1
Multiple Operands for FCBs and FDBs

[hate to have to tell you this, but:

FCB 34,34,36,37
and:

FDB 1000,2000,131

are not legitimate assembly-language lines. You must have a sepa-
rate FCB for every data byte and a separate FDB for every data
“word” (2 bytes). One way to get around this somewhat is to pack 2
data bytes into an FDB:

FDB $1234 = FCB $12
FCB $34

The FCC Pseudo-Op

The FCC pseudo-op is also new. The FCC generates ASCH bytes. ASCII, of
course, is a special code used to represent text data. All assemblers have sucha

99

1 1 Generating Data Values and Simple Indexing

pseudo-op to allow the programmer to easily construct messages and other
text data. ASCII characters are shown in Appendix VL

The FCC (“Form Constant Character”) generates one ASCII byte for each
character enclosed within the quotes. We've used a single quote around the
characters here, but in fact, the "delimiter” could be any character that won't
be used inside the string. EDTASM+ looks at the first character to define the
“delimiter” and then looks for the second occurrence of the character to
define the end of the string. Typical strings might be /STRING HERE
WITH SLASH DELIMITER/, &STRING HERE WITH AMPERSAND
DELIMITER&, =STRING HERE WITH EQUALS DELIMITER=.

Figure | 1-5 shows the assembly of the table above. To see how this assembles
in memory, use the A/IM option and then go to ZBUG.

Q0100 * TABLE WITH LARGE ENTRIES AND SEVERAL FIEL DA
28DD 0103 @B110 EMPTAR FDE $0103
@EDF 57 oA10 Feo *UM PARRAGE
4D
0
4z
41
43
4
41
47
45
0
20
8
20
PBED 1812 00130 FDE. $1012
@8EF 47 20140 Fce *GEORGE BOOLE ?
45
4F
52
47
45
20
42
4F
4F
4C
45
20
0
BOFD OFBZ 20150 FDE $OF a2
Q8FF 42 20160 FCe "BLAISE PASCAL °
4¢
41
49
53
45
20
50
41
53
43
41
4C
0
290D 1@14 oe170 FDE $101A
Q@90F 41 00180 Fce *ALAN TURING

Figure 11-5. Table With Large Entries - Program
100

Generating Data Values and Simple Indexing 1 1

4C
41

4E

>0

54

S5

52

49

4E

47

Z0

=0

0

200 20150 END

@002 TOTAL ERRORS

EMPTAE. @8DD

Figure 11-5 continued

In ZBUG, set the ASCII examination option by using the A command:

*A/IM (assemble)
%7, (ZBUG)
HA (set ASCII)

Now examine the locations from EMPTAB by using the slash or T com-
mands. You'll see something like this:

#TABLE/ (DOWN ARROW)
838/ (DOWN ARROW)
839/ A\ (DOWN ARROW)
83A/ M (DOWN ARROW)
83B/ (DOWN ARROW)
83C/ B (DOWN ARROW)
83D/ A (DOWN ARROW)

The ASCII examination option displays every byte as its ASCII character.
Those bytes which are not valid ASCII characters are displayed as blanks. The
first two bytes of the EMPTAB are $01 and $03, not valid ASCII characters,
and they displayed as blanks. The ZBUG A command lets you examine ASCII

characters strings and messages easily.

It's kind of inconvenient not being able to display the numeric values, isn't it?
Here's a trick in ZBUG. Use the = sign to force numeric display and Byte
mode. To see the equivalent numeric, just enter an equals sign after each
location, and you'll see the equivalent numeric:

#TABLE/ =01 (DOWN ARROW)
838/ =03 (DOWN ARROW)
839/ W (DOWN ARROW)
83A/ M (DOWN ARROW)
83C/ =20 (DOWN ARROW)
83B/ B (DOWN ARROW)
83D/ A (DOWN ARROW)

101

1 1 Generating Data Values and Simple Indexing

Accessing Multiple-Byte
Table Entries

We can "scan” a table such as the one on the previous page just about as easily as
we did in the one-byte per entry table case. Scanning means going through the
table one entry at a time and trying to find a given entry.

In this case, though, we have to adjust the table pointers by 16 to get to the
next entry.

Suppose that we are looking for the Social Security Number “key,” held in
memory locations $3000 and $3001. We can use the following program to
scan the 4-entry EMPTAB table:

P01 * TABLE LOORUP FOR FINDING SuCIAL SECURITY NUMEF K

IBRS7 8E [l s3s]%] BO11@ SSNLOK DX HEMPTAR 1LOAD STAKT OF TABLFE
oBSA C6 @4 201D LDR #4 FOR 4 ENTRIEG
OBSC P& 3000 D130 SSNO1@ LDA $3000 GE1 FIRST BYTE OF #
PBSF Al 84 o140 CMPA) X COMPARL
QR61 26 OB 20150 BNE SHNG2D GU L NOT EQUAL
P43 30 B1 20160 LEAX 11X FOINT TO NEXT EBYTE
OB65 P& 3001 001 /0 LDA $3001 GET ZND BYTE OF #
PR68 AR B4 20160 SUBA) ¥ COMPAKE
@R6A 27 @C 00150 REQ S5SND S GO IF "FOUND®
PRLC 3B IF 20200 LEAX -1y X ADJUST PNTR
ORLE 30 88 10 00218 SSNOZ0 LEAX 164X POINT TO NEXT ENTRY
2871 95A obzzo DECE # ENTRIES- 1
PR7Z Z6 E8 20230 BNE SSNB 10 GO IF NOT 4 ENIRLES
0174 B6 FF o0z4a LDA H$FF "NOT FOUND" FLAG
oR76 20 Bz 20250 RRA SSNO3I0
@R78 3@ 1F P0z60 SSNDZS LEAX ~1sX ADJUST X
QR7A B7 3002 00270 SSNO3B STA $3002 STORE FLAG
D7D 7E @R7D 20280 LOOP JMP LooP LOOP HERE
00299 * TAPLE WITH LARGE ENTRIES AND SEVERAL FIELDS

PRS0 0103 20300 EMPTAR FDR $0103
oes:z 57 20310 FCe *WM RARBAGE ’

4D

0

4z

41

42

41

47

45

20

0

0

0
0B90 1012 20320 FDE 1012
089z 47 20330 Fce ' GEORGE BOOLE

45

4F

52

47

45

z0

4z

Figure 11-6. Table Lookup Program 2
102

Generating Data Values and Simple Indexing 1 1

4F
4F
4C
45
20
20
0BAD oF ez 20340 FDE $OF Dz

BBAZ Z% 00350 FCC "BLLAISE PASCAL ~

o1B0 121A o360 FDE $101A
2BBR2 41 22370 FCC ’ALAN TURING ’
4C
41
4E
20
54
55
52
49
4E
47
20
=0
<@
2000 202180 END
20000 TOTAL ERRORS

EMPTAE @BBO
LOOP @e7D
SGN@18 @e5C
SSNO:z@ 0B6E
SSNOZS OR78
SE5N230 0R7A
SESNLOK @B57

Figure 11-6 continued

This is a fairly complicated program, so we'll explain carefully how it works.
The flowchart is shown in Figure 11-7.

103

1 1 Generating Data Values and Simple Indexing

: SSNe1g ¥

SSNLOK

START OF
TABLE TO
X

4-8

Y

GET FIRST
BYTE OF
NUMBER FROM
$3000

Y

COMPARE
AGAINST
TABLE ENTRY
BYTE @

Figure 11-7. Table Lookup Program Flowchart

—— % OF
ENTRIES

——POINT TO
NEXT
TABLE
ENTRY

—— DEC #
OF ENTRIES

——LOOP

SSN020 ¥
NO ADD 16 TO
X
YES
\
X+1 -X —— POINT B-1-B
TO NEXT
TABLE
BYTE
A
GET SECOND NO
BYTE OF NUM- (B) @
BER FROM ?
$3001
YES
/
SUBTRACT SET A TO
TABLE ENTRY |—— NOW -1 (NOT
BYTE 1 IN A FOUND)
SSNe3e
STORE (A)
IN $3002
LooP y
DONE
x-1 -X —— NOW
POINTS TO
FIRST TABLE
BYTE

First of all, X is loaded with the address of the table. X will point to each entry
in the table in turn.

Next, B is loaded with 4. Since there are 4 entries, we'll have to go through a
loop 4 times to compare each entry.

The loop starts at SSNO10. Each time through the loop, the following actions

occur:

® The first byte of the Social Security number is loaded into A from memory
location $3000.

104

Generating Data Values and Simple Indexing 1 1

e This value is compared to the table value pointed to by X. This would be
the first byte of the “current” entry.

e If they are not equal (BNE), a jump is made to SSN020 to adjust the X
pointer to the next entry.

e If they are equal, X is incremented by one by the LEAX to point to the next
byte in the table entry.

e The next byte of the number in location $3001 is loaded into A.

e A subtract of ,X is done. This subtracts the next byte of the table entry
from A, puts the result (zero or non-zero) in A, and sets the Condition
Codes.

e If the second bytes were equal (BEQ), the number has been found. In this
case a jump is made to SSN0O25.

e X is adjusted back to the start of the table entry by decrementing by one in
the LEAX.

o If the first or second bytes were not equal, the LEAX 16,X adjusts X by 16
to point to the next table entry. The count in B is then decremented by one.
A BNE then loops back to SSNO10 for the next comparison. If the count in
B is decremented down to 0 by the DECB, the loop is done, A is loaded with
-1, and a jump is made to SSNO30.

e SSNO30 stores the value in A in location $3002. This value is 0 (from the
subtract) if the number was found, or -1 if the number wasn’t found after 4
compares.

® Animportant note: If the number is found, X points to the table entry for
the number. This is the most important result of this table “scan”

If you care to run the program to see how it works, enter a number into $3000
and 83001 to correspond to one of the table entries. Breakpoint at LOOP and
execute from SSNLOK.

At the end of the program, A should contain the "found”/ "not found” flag
and X should point to the table entry if it was found. Use the ZBUG R
command to look at the registers.

We'll look at more table techniques in the next chapter.

Hints and Kinks 11-2
Using ZBUG U Command

Move data from one area to another by the ZBUG U command. To
move 100 bytes from a tuble at location $2000 to a new area of $3000
do:

#U2000 3000 64

Note that the number of bytes s in hex.

105

1]_ Generating Data Values and Simple Indexing

Hints and Kinks 11-3
Using the ZBUG P, L, and V Commands

This is probably a good point to mention the ZBUG cassette tape
commands. They let you save and load a "memory image” as a cassette
tape file. This is handy for debugging — you can debug a file and
then "checkpoint” the “object” to cassette. However, these three
commands would be much more valuable on an Edit/Assembler
package that was less interactive.

To dump any set of memory locations do a
PNAME NNNN MMMM EEEE

where NAME is the file name, NNNN is the start of the data to be
dumped, MMMM is the end of the data to be dumped, and EEEE is
the execution address. (If you're dumping data, use a dummy execu-
tion address; you won't be doing an execute anyway.)

V and L work the same as in the Edit mode.

Review
To review what we've learned in this chapter:
® A simple table might be a list of one-byte entries

® A table can be accessed by using an “index value!’ The index corresponds to
one parameter, and the entry at the index position is another related value

® The FCB generates a one-byte data value

® Data can be labeled with symbolic names, just as instructions can be

labeled
® Tables with multiple-byte entries are common
® Entries in tables may be subdivided into fields
® Tables may have “fixed-length” or “variable-length” entries
e The FDB generates two bytes of data
® The FCC generates a string of ASCII characters

® “Scanning” a table means that a search of the table is performed; the
search is for a specific entry

For Further Study

FCB, FDB (EDTASM+ manual)
FCC and ASCII codes (EDTASM+ manual)

106

KEY CHART — CHAPTER 12

INSTRUCTIONS

¥ ABHS CERB—1D8—
A BifA— CLR pasion
s CMPA- X

b6C +BES -eMR¥ LSLA
LA B &oMA LSLB
LB B+ GOMB LSL

iL BML COM LSRA
SRA B4 CWAI LSRB
JRB BAE DAA LSR

iR +BNE BEGA— MUL
¥ BRL DECB- NEGA-
66 LBRL DEG- NEGE-
¥ BRA- EORA NG
S +BRA- EORB NOR
e~ BRA~ EXG- ORA-
Q LBRA— INGA- QORB-
1. BSR HcB BRGC-
IGE LBSR JANC- PSHS
- B JMP- PSHU
7 £B8¥6 JSR PULS
W BUS~- LLA- PULU
WL LBYS DB ROLA
S~ SLRA—- LDDO- ROLB

ADDRESSING MODES

%§§§§§

SPLACEMENT INDEXED
ITO INCREMENT/DECREMENT
IRECT

PHISTICATED
PSEUDO OPS
plv ORG
8 RMB
e SET
BB SEFo—
)d Type Present Chapter

wgular Type Future Chapters
Wie-Lype Past Chapters

EDTASM+ EDITOR COMMANDS
ROL ArSSEMBLEES HNSERTF RIEPtACE—
RORA —€1OFfY —t1rOAD TrHARDCOPY—
BrHEEEEFES HOYES —ERHY
—£t+HF- —MHOMBER) —WrR+rE
e PRI Fag=1ocymn
HARLECOPY) QrotF—

SHBA-
SHB8-
SHEO0-
Swi

EDTASM+ ASSEMBLER COMMANDS (A)

/A0 ABSOLUTE ORIGIN
HAANAAEIAORASSEABY-
R LANE RRANTER —

/MO MANUAL ORIGIN

/NL NO LISTING

/NO NO OBJECT

/SS SHORT SCREEN
M WA ONERRORS ——

EDTASM+ ZBUG COMMANDS

ALSGHF-BHSRLAY-

C(ONTINUE)

BHSREAYS-
EHER)—

H(ALF) SYMBOLIC

A
M(NEMONIC) MODE
N(UMERIC) MODE
SO RUF)-BASE—
R-SAVE IML—ONTARE—

S(YMBOLIC DISPLAY)

FBHSAAY-BLOGK—
FHAHARDCORYBLOCK—
S HHOHEBHOGK

W(ORD) MODE

X—BREAKPOIHNT—~

YAANK)—BREAKPOINT-

A EXANE PRECEDING—

— EXAMHNENEXF

- BRANCH INDIRECT

. FORCE NUMERIC

4 EQRGE NUMERICBYTE.
FORCE FLAGS

L_EXAMINE _

—~SINGLE STER.

GENERAL TOPICS

INDEXING WITH XY
SORTING

SUBROUTINES

STACK OPERATIONS
ROTATES, SHIFTS
MULTIPLES

DIVIDES

DECIMAL ARITHMETIC
BASIC INTERFACING
PASSING PARAMETERS
VARPTR USE

ROM SUBROUTINES
OTHER ADDRESSING
GRAPHICS

SOUND

LARGER PROGRAMS

107

108

QACS
DACE
BACA
PACE
BADO
QADZ
DAD4
BADS
QADSB
AADA
@ADD
@ADE
DAED
BAEZ
QBAES
BAESB
BAEA

BAFB
DAFA

opes
2BOA

Chapter 12

Indexing Operations Using X and Y

The X and Y registers in the simplest addressing case can be used as
“pointers” to point to the address at which data can be found. Their real
application, however, is in full "indexing” where they point to a midpoint
location and allow data on either side of that location to be easily referenced.

Let’s take another look at the program from Chapter 11. A modified version
is shown below:

10

Z2h EE

300z
PAES
2103
57
4D
20
4z
41
4z
4z
41
47
45
2@
20
0
0
1812
47
495
4F
52
47
45
20
42
4F
4F
4C
45
20
20
QF @z
4z
4C
41
49
53
45

bl
&

or12@
20110
2e1:0
20130
20140
20159
BR162
20170
20180
02150
[ralrabedval’a}
20210
ey

20230
PRz40
20250
PRZ60
P0z70

ralrayeg=lv]
20290

Do3ee
20310

* TABLE LOORUF FOR FINDING

SENILLOK

StNei@a

SENDZ2@

SSNB30
LOOP
EMPTAE

SOCIAL SECUKRITY NUMBER

LDX HEMPTAR L.OAD START OF TABLE
LDE #4 FOR 4 ENTRIFS

LDY #43000 POINT TO #

LDA Y GET FIRST BYTE OF #
CMPA s X COMPARE

ENE SENOZO GO IF NOT Eoual

LDA +1sY GET 2ZND BYTE OF #
SUBA +13X SUBTRACT

BEG SENO30 GO IF "FOUND"

LEAX 165X POINT TO NEXT ENTRY
DECE HENTRIES-1

BNE SEN210 GO IF NOT 4 FNTRIES
L.DA #$FF "NOT FOUND* FI.AG

STA 300z STORE FLAG

JMP LOOP

FDE $2103

FCC WM PBARRAGE ’

FDE 1012

FCC GEORGE ROOLE

FDE $OFOL

FCC TELAISE PASCAL

Figure 12-1. Table Lookup Program

109

1 2 Indexing Operations Using X and Y

5@

41

53

43

41

4C

z0
ee1s 101A 2030 FDR $101A
2B1A 41 20330 FCC ALAN TURING ’

4C

41

4E

2@

54

55

5%

49

4E

47

>0

20

20

o020 22340 END
22600 TOTAL ERRORS

EMPTAE QAEB
LOoOP @AES
SENR1® QACE
SSNO:@ QADA
SSNO38 0AEZ
SGNLOK BACS

Figure 12-1 continued

Compare this program with the version from Chapter 11 and see if you can
find the differences.

Aside from the fact that the Y index register is used to point to the number to
be found, the biggest difference is that X and Y are used not just as “pointers”
but with a "displacement value” of +1 as in +1,X or +1)Y.

Indexed Addressing

The type of addressing mode we're using here is called “indexed addressing”’
We've used the X and Y registers previously in this book, but only as “register
pointers” to point to a memory location. In this example, X and Y are used as
"“base index registers,’ pointing to the start of an area.”The “+1"” in the +1,X or
+1,Y is a "displacement” value that is added to the X or Y pointer value to
find the actual location pointed to. This location is called the "effective
address’”

Figure 12-2 shows what we mean. Here X points to location $3000. Doing an
LDA in indexed addressing mode, however, allows us to load A notonly with
the contents of location $3000, but any memory byte in the addressing range
of the 6809 — 65,536 locations in all (although some of them are not used as
memory in the Color Computer).

110

Indexing Operations Using X and Y 1 2

' i
A !
|
|
|
$2F80 -128, X
% P
$2FFD 3, X
$2FFE 2.X
$2FFF X SHOWS 256 BYTES OF
X POINTS —» $3000 X POSSIBLE 65,536
HERE BYTES ADDRESSABLE
$3001 X BY INDEXING
$3002 ‘2, X
$3003 13, X
A x
$307F 127, X

Figure 12-2. Indexed Addressing Example

-— —— —

Consider this program as an example:

28100 * INDEXING EXAMPLE

@952 BE 3003 20110 INDSTR LDX #$3003 POINT TO BASE
0955 Ab iD oo1z@ LDA -3y X GET -3 BYTE
0957 Eb&6 23 00130 LDB +35 X GET +3 BYTE
0959 A7 23 B0140 STA +33 X SWAP

0958 E7 1D 20150 STB -3s X

295D Ab6 1E 22160 LDA —Z X GET -& BYTE
@95F E6b6 oz 20170 LDe +29 X GET +Z BYTE
8961 A7 8z 22180 STA +2 X SWAP

@963 E7 1E 20190 sTe 29X

0965 Ab 1F 20200 LDA -15X GET -1 BYTE
0967 E6 a1 oz10 LDe +1sX GET +1 BYTE
8969 A7 21 vo:zze STA +1s X LOOP

@96 E7 1F 20230 sSTE ~13X

896D 7E 896D 2240 LOOP JMP LOOP LOOF HERE

2000 20250 END
20002 TOTAL ERRORS

INDSTR @952
LOOP 896D

Figure 12-3. Indexing Example Program
111

1 2 Indexing Operations Using X and Y

This isn't an especially profound program, but it does illustrate how indexing
works. The data in $3000 through $3002 will be put into locations $3006
through $3004, respectively, by indexing the $3000 area. Note that X never
changes. It points to the base address of $3003.

Now look at the machine-language instructions assembled for the indexed
instructions. The first byte of indexed instructions are the “opcode.’ The last
1 to 3 bytes is always a "displacement” or a displacement code.

The displacement is a two's complement number. In the case of the instruc-
tion LDA -100,X, for example, the displacement is in the range of -128
through +127, very similar to the displacement used in the relative jump
instructions. Assemble an LDA -100,X and look at the displacement in the
third byte. The displacement byte here is $9C, which is a binary 10011100, or
a -100 in two’s complement form.

The “effective address” for an indexed instruction is found by taking the
contents of the index register and adding the sign extended displacement to
it. The result is the address used in the instruction.

Suppose we had $3003 in X.
In the case of LDA -100,X, for example, the effective address would be

00110000 00000000 ($3003 in X)
11111111 10011100 (-100 in displ)

00101111 10011100 ($2F9C = EA)

“"EA" stands for "effective address” in this computation. This effective
address of $2F9C would be used in the LDA, so in effect:

LDA -100,X = LDA $2F9C

in this case.

If you look at the other indexed type instructions, you can see that they also
have displacement bytes that duplicate the value in the source line. In the case
of a displacement value from -16 to +15, the displacement value will usually
be in the second byte of the instruction. It will be the last 5 bits of the byte. For
displacements in the range -128 to -17 and +16 to +127, the displacement will
usually be in the third byte of the instruction. For displacements of -32768 to
-129 and +128 to +32767, the displacement will usually be in the third and
fourth bytes of the instruction.

Of course, we're only showing you how the effective address is computed here
for reference. You don't have to worry about the actual computation; the
assembler will automatically take care of it for you. All you have to do is to
establish the X or Y register at some base value and then use the proper
displacement such as +23,X, -67,Y, +1000,X, or -300,Y.

112

Indexing Operations Using X and Y 1 2

Variable Offsets From X or Y

The 6809 is so versatile in indexing that it allows the displacement to be as
small or as large as you wish, within the range of 65,536 bytes, of course.

Take these instructions:

LDY #$3000 SETUP INDEX
LDA Y GET ($3000)
LDA +5.Y GET ($3005)
LDA +64,Y GET ($3040)

LDA +$1000,Y GET ($4000)

Just for fun, assemble them with an A/IM and look at the object code from
the assembly. You'll see something like Figure 12-4.

2887 108E 3000 20100 LDY #$3000 SETUP INDEX

a88B Ab A4 20110 LDA 'Y GET ($3000)

088D AL 25 oo120 LDA +5,Y GET ($3005)

@88F A6 AB 40 20130 LDA +641Y GET ($3040)

0892 Ab AT 1000 00140 LDA +$1000,Y GET ($4000)
0000 20150 END

20000 TOTAL ERRORS

Figure 12-4. Varlable Offsets From X or Y

The first displacement for LDA Y was 0, and this resulted in a two-byte
instruction with an opcode of $A6 and $A4 (no displacement).

The second displacement for LDA +5,Y was found in the last S bits of the
second byte of $AG, $25.

The third displacement for LDA +64,Y was +64. This can be held in one byte,
and this instruction was assembled with two opcode bytes of $A6 and $ A8 for
the opcode, followed by a third byte for the displacement, $40.

The fourth displacement for LDA +$1000,Y was hex 1000. This value cannot
be held in 8 bits, but can be held in 16 bits, or 2 bytes. The assembler
generated a $A6 and $A9 for the opcodes for this instruction, followed by a
two-byte displacement of $10 and $00.

How does EDTASM+ know when to use no displacement byte, one dis-
placement byte, or two displacement bytes? It’s smart enough to figure out
how large the displacement will be and generates a displacement accordingly.
What this means is that you, as a programmer, can use any size displacement
in indexed instructions and not have to worry about whether EDTASM+ can
handle it!

Hints and Kinks 12-1
Indexing Formats

You can see the indexing formats in Appendix II under “Indexing
Addressing Modes™ and "Constant Offset From R.” The indexing
we're talking about in this chapter involves the X and Y registers,

113

1 2 Indexing Operations Using X and Y

although in fact X, Y, and S and U can be used in the same fashion.
We'll discuss the use of S and U in a later chapter.

The format of the indexed instruction depends upon the size of the
displacement, the “offset.”

If there is no offset, as in , X, the the instruction consists of one or
two opcode bytes, plus a last byte of IRR00100 in binary, where
“RR” is 00 for X or 01 for Y.

If the displacement can be held in 5 bits (-16 to +15, then the
instruction consists of one or two opcode bytes plus a last byte of
ORRnnnnn, where RR is 00 for X or 01 for Y and nnnnn is the
displacement value, in signed format.

If the displacement can be held in 8 bits (-128 to +127), then the
instruction consists of one or two opcode bytes, a byte of
1RR01000, where RR=00 for X and 01 for Y, and a displacement

byte in two's complement.

If the displacement must be held in 16 bits, then the instruction
consists of one or two opcode bytes, a byte of IRR01001, where
RR=00 for X and 01 for Y, and a 2-byte displacement value.

It's not necessary to know these formats bit for bit in programming
the 6809, but we're presenting them here for your enlightenment
and amusement!

Table Operations Using Indexing

Indexing is especially useful in working with tables. Suppose that we have a
table that contains entries for a simple inventory system for a computer
manufacturer. The table and entries are shown in Figure 12-5.

“MASTER" TABLE-MASTER DATA ON INVENTORY
20 BYTES/ENTRY

—]
+
ENTRY @ | 123 M & M E O R I E S 5 b 2334
1{ 223 E A D o N L D 1 s K S 6 |100]|201
2{s1|{c 0o D I N G 5 S H E E T S 5 [134]100
\——PART# NUMBER NUMBER
ON HAND ORDERED
“TRANS" TABLE - DAILY TRANSACTIONS
e
ENTRY® { 123 | 5
1123 |7
-+ 3BYTES/
2 501 10 ENTRY
223 1100
T
. PART NUMBER
Figure 12-5. Inventory Table M RECEIVED

114

Indexing Operations Using X and Y 12

Each entry in the "master” table is made up of four fields.
Field number [is the part number, from 0000 through 9999, in 2 bytes.

Field number 2 is the description of the part. This is a fixed-length field of 16
characters.

Field number 3 is the number "on hand, the number actually at the manufac-
turer, in one byte.

Field number 4 is the number on order, the number of parts that haven't yet
come in, in one byte.

Each entry in the table is therefore 20 bytes long.

Each entry in the "transaction” table, a second table, is made up of two fields,
a part number (two bytes) and the number received, in 1 byte. Each entry is
therefore 3 bytes long.

We want to write a program that will adjust both the number on order and
number on hand in the "master table” to reflect the number of parts that
have come in from the "transaction” table. One way to implement it is shown
below.

20128 * INVENTORY PROGRAM USING INDEXING .
@110 * UPDATES MASTER TABLE WITH DATA FROM 1RANSACTION

TABLE
@D15 1@8E @D8s 0120 INVSTR LDY #TRANS ADDRESS OF TRANSACTION
@D19 C6 04 02130 L.DR #4 NUMBER OF TRANSACTIONS
@D1B F7 DDb49 20140 STR COUNT INITIALIZE COUNT
@DIE BE QD4A 20152 INV@1@ LDX #MASTER ADDRESS OF MASTER
oDz1 EC A4 Q0168 INVOZ® LDD s Y GET PART #
@DZ3 10A3 84 20170 CMPD ' X TEST FOR PART #
oDz6 26 1% 001680 ENE INVO32 GO IF NOT EQUAL
oDZ8 A6 Iz 00150 LDA Iy Y GET NUMBER RECEIVED
2bzA AR B8 17 2000 ADDA +185 X ADD ON HAND» RE (VD
@DzD A7 88 1% 0Bz10 STA +18y X STORE NEW ON HAND
oD30 A6 BB 13 0020 LDA +19, X GET # ORDERED
@D33 AR zZ 20230 SUBA +ZyY # ORDERED - # RCVD
oD35 A7 88 13 00240 STA +199 X STORE
@D38 2@ @5 00250 BRA INV@4@ GO FOR NEXT PART
2D3A 30 88 14 POZ60 INVO3@ LEAX +20s X POINT TO NEXT
@D3D @ EZ 00270 BRA INVOZO GET NEXT FROM MASTER
@D3F 31 23 0080 INVD4D LEAY +3sY FOR TRANS TABLE
@D41 7A ©@D49 20290 DEC COUNT DECREMENT #
D44 z6 DB 00300 BNE INVB1D GO IF NOT DONE
@D46 7E @D4b 20310 LOOP JMP LOOP DONE
@D49 20 P@3Z@ COUNT FCR @ # COUNT
oD4A o078 00338 MASTER FDP 123 PART NUMBER 1.3
8D4C 5 00340 Fce *RAM MEMORIES ’

41

4D

20

4D

45

4D

4F

52

49

45

53

0

0

Figure 12-6. Inventory Program
115

12 Indexing Operations Using X and Y

2Ds5c¢C 17
onsD 22
BD5E
2D6R 5z

op7a 64
@D71 ce
ap7s
QD74 43

53
0
e
0
oD84 a6
@Das b4
0186 0B7P.
D88 as
oD8Y P@7E
@aDse 27
on8c B1FS
@DBE 24
PDEF P@DF
ap91 b4

[radltil]
20002 TOTAL ERRORS

COUNT D4
INVO1@ @D1E
INVDZO® @DZ1
INVA3@ ©@D3A
INVD4R @D3F
INVSTR @D15
LOOF @D4 &
MASTER QD4A
TRANS angé

PO350
O360
o370
20380

20390
o400
0410
P40

QR4 30
00440
0450
Q0460
av470
480
Q0490
20500
ees12
20520
20530

TRANS

FCB
FCe
FDE
FCC

FCE:
Fce
FDE
FCC

FCR
FCB
FDE
Fce
FDe
FCe
F DE:
FCR
FDE
Fce
END

23

34

=23 PART NUMBER
’READ ONLY DISKS *

100

21

521 PART NUMBER 5@1
?CODING SHEETS ’

134

100

123 FART NUMBER 123
5 5 RECEIVED

123 PART NUMBER 123
7 7 RECEIVFED

501 FART NUMBER 5H@1
10 1@ RECEIVED

223 PART NUMBER I3
100 120 RECEIVED

Figure 12-6 continued

The two tables are established in the program itself, one called MASTER and

the other TRANS.

A flowchart for the program is shown in Figure 12-7.

116

Indexing Operations Using X and Y 1 2

INVSTR
TRANS
ADDRESS |——POINT TO
TOY TRANS TABLE
4—COUNT
INVE1D |
MASTER
ADDRESS TO |[——POINT TO
X MASTER
TABLE
INVO20 y<
GET NEXT
TRANS PART
#

/

POINT TO
ADD # RECEIVED NEXT MASTER | ——MUST
FROM TRANS ENTRY BE FOUND
TO MASTER ON
HAND

SUBTRACT #
RECEIVED
FROM MASTER
ON ORDER

INVB49 ‘

POINT TO

NEXT TRANS
ENTRY
COUNT-1-COUNT

NO ——COUNT-@?

Figure 12-7. Inventory Program Flowchart

X isused in the program to point to the MASTER table. Y is used to point to
the TRANS table. Y is used to go down the TRANS table one entry at a time.
Each time one entry is obtained from TRANS, the MASTER table is
“scanned” for the matching part number. We’re assuming the part number
will always be found, by the way. If it is not, what will happen?

117

1 2 Indexing Operations Using X and Y

Hints and Kinks 12-2
Inventory Program

No question about it, this program is flawed! If there 1s a TRANS
part number that is not found in the MASTER table, the program
keeps scanning the MASTER table for the part number. The
instruction at INVO30 continually increments the X register to
point to the next part number in MASTER and doesn’t stop with the
last. The program as it stands will work fine, but is not good pro-
gramming practice. We should have included a “terminating part
number” in MASTER — something like a puart number of 9999,

Muaybe you'd like to “clean up” the program? Aha, I didn't think
SO. ..

When the part number is found, the number received from the TRANS table
is added to the number on hand, and the updated number on hand is put back
into the MASTER table. The number received is then subtracted from the
number on order and the resule is put back into the number on order.

All through the program, Y points to TRANS and X points to the master
entries.

Here's a detailed description:

Y is first loaded with the address of TRANS. Next, B is loaded with-i. There
are -1 entries in TRANS, so we'll have to make 1 updates to the MASTER
table.

The “outer loop™ starts at INVO10. The outer loop is done 4 times, once for
cach entry in TRANS. The outer loop contains an “inner loop™ which
scarches the MASTER table for the part number.

At INVO10, the address of MASTER s loaded into X. In other words, we're
starting again from the “top” of the MASTER tuble to look for the part
number.

Next, the part number of the current TRANS entry is loaded into D (A and
B). Notice the method in which D is loaded, by using Y indexing to load the
next 2 bytes from TRANS.

The inner loop starts at INV020. At this point Y points to the current
TRANS entry aund X points to the first entry in MASTER.

D is now compared with the part number from the MASTER table. If the
part numbers are not equal (BNE), INV030 is executed to add 20 to the X
register. This points to the next entry in MASTER.

If the part numbers are equal, the number received is added to the number on
hand, and the number received is subtracted from the number ordered. The
results are stored back in MASTER. The outer loop code at INV0OA0 is then

118

Indexing Operations Using X and Y 1 2

executed. This code increments the Y (TRANS) pointer by 3 so that it points
to the next TRANS entry. The number in B is then decremented and a
branch is made back to INV010 for the next TRANS part number.

When all 4 TRANS part numbers have been processed, the program stops.

If you wish, you can assemble and run the program and you'll see the process.
Use ZBUG to look at the results of the processing,

If you can follow the code in this program, you're doing very well. We have
covered a great deal of ground in the past chapters and this program
incorporates most of the concepts we've discussed in the past chapters. A
great deal of 6809 assembly-language “code” is no more difficult than the
program above.

Review
To recap what we've learned here:
® X andY can be used as pointers, but may also be used as “index registers”

® When used as index registers, X and Y use a 5-bit, 8-bit, or 16-bit
displacement value

® The displacement value, when “sign-extended” and added to the contents
of the index register, forms an “effective address” that points to the
operand for the indexed instruction

® Data can be referenced anywhere within memory from the index “base”

® Indexing can be used to an advantage in table and other operations

For Further Study

Instructions using X or Y indexing (Appendix II)

119

KEY CHART — CHAPTER 13

INSTRUCTIONS EDTASM+ EDITOR COMMANDS
—ABH— ABHS— SEAB—BS- ROL -ALSSEMBLE) HNSERF RHEPEAGES-
ADEA BHA CLR +Bt— RORA -6(OR%F +HOAD FHHARDGORYS
—ADCB- —BIFB- -GMPA D% RORB —BHELEFE— MHOVES WERHFYS
ABBA- B -GMPB —+D¥ ROR —FtbH+ NHMBERT WA
ADDB- +BLE— -GMPH- —EAS RTI AN S TSTIVE ZBHGH—

RADDH- BEG EMPS— +HEAY- RTS HARBGORY— QT

ANDS- BES EMPX- LEAY 5B66- EDTASM+ ASSEMBLER COMMANDS (A)
ANDEES EBES- EMP¥- LSLA SEX /AO ABSOLUTE ORIGIN /NO NO OBJECT
ASLA - BEF— COMA— LSLB STA ot in MEMORYASSEMBLY — NS—NO-SYMBOL B
ASLB —+BtF -€6MB LSL SFB-

PN PRHNTFER-
ASL — BM €OM— LSRA SFB- 5 MANUAL ORIGIN m
ASRB -BNE DAA LSR SF&
ASR BNE— -BEGA MUL —SF%
BEE BP BEEB NFOA- SFF EDTASM+ ZBUG COMMANDS

+BEE —+BP+ BES NEGB —SHBA- ATSCHIDISPEAY- FDISPLAY—BLOEHK
BES BRA— TORA NS SUBH FHHARDECOPYBLO6HK
+BES +BRA FORB NOR Susp C(ONTINUE) U MOVEBLOCHK-
BEQ BRN- X6 ORA SWI BHSPEAY—
+BFQ —+BAMN HNGA -ORB- SWI2 —EfBHOR W(ORD) MODE
Ba+ BSR HNEB -BRGE SWI3 69 X—BREAKPROHNF
+BGF LBSR NG PSHS SYNC H(ALF) SYMBOLIC YAANK—BREAKPOINF~
BGF BYe P PSHU ~FFR— -HNPUT) BASE + EXAMINE PREGCEDING
+B6F —+Bv¥E- JSR PULS FSFA- HOAD)I ML FILE ——EXAMNENEIT—
—Bi -BYS DA PULU -FSFB— M(NEMONIC) MODE — BRANCH INDIRECT
+BH- —BYS BB ROLA —FSF N(UMERIC) MODE . FORCE NUMERIC
BHS—~ CLRA— +B5- ROLB —BrOUFPHTBASE ——FORCENIMERIC-BYF
—P—SAVFIH—ON—TAPE - FORCE FLAGS
—REGISTERT DISPHAY— F—EXAMNE
nereng. DPRESSING MODES S(YMBOLIC DISPLAY) —SINGFESTER-
—DIREGF
~EXTFENDED GENERAL TOPICS
HAMEDIATE -CRU-REGISTERS SUBROUTINES
SHARLE INDEXED BAFA-TO—REGISFERS— STACK OPERATIONS
RELATIVE LOABHNGAND-SFORING ROTATES, SHIFTS
DS PLACEMENT—ANDEXED— ADDITION-AND-SUBTRACTION. MULTIPLES
AUTO INCREMENT/DECREMENT ~CONBIHHON-CODBES DIVIDES
INDIRECT —SYMBOLIGC ADDRESSING- DECIMAL ARITHMETIC
SOPHISTICATED JUMPS_ _BRANGHES BASIC INTERFACING
RELATHE BRANGHES — PASSING PARAMETERS
NCREMENTSHDECREMENTFS- VARPTR USE
£ PSEUDO OPS oR COMPLEMENTS- ROM SUBROUTINES
QU G +LOGHCAL-OPERATHONS- OTHER ADDRESSING
Fe8 RMB MULFIRLE PREGHHION—- GRAPHICS
FEC SET BATAYALLES SOUND
5B SEFOF— NDEXNG— LARGER PROGRAMS
SORTING

Bold Type - Present Chapter
Regular Type - Future Chapters
RalicType - Past Chapters

120

Chapter 13
Operations of a Different Sort and
Unsigned Comparisons

In previous chapters, we've covered many of the programming techniques
that we can use to access data in tables; using the indexed addressing mode
plays an important part.

The tables before this chapter were “scanned” one entry at a time to find
data; we didn't know exactly where in the table we'd find the “search key,” and
had to methodically go through all the entries until we found the one we were
looking for. These types of tables are called "unordered,” because the entries
don’t have any logical order.

In this chapter we'll look at tables with an “order” We'll also see how the
index registers may be automatically incremented or decremented.

Types of Orders

In ordered tables, the order may be in alphabetic order, like a phone book, or
in numerical order, historical order, or other scheme. Also, the order may be
“ascending” or "descending’” Descending would be a phone book printed
from Z to A.

The most common order in assembly-language tables is alphabetic order, as
in other types of programming. Usually the sequence is “ascending,” from A
to Z.

Actually, the “alphabetic” order really includes all ASCII characters, so it
should really be called "alphanumeric” and special characters. Look at
Appendix VI to see the ASCII codes for alphabetic, numeric, and special
characters. The order we'll be using here will be based on these codes.

Anexample of data sorted on these codes is shown in Figure 13-1. Note that
as you would expect, A through Z and 0 through 9 are kept in order, that
blanks come before anything else, and that special characters are somewhat
scattered around.

Hints and Kinks 13-1
More on Alphabetized Sorting

Although the Color Computer doesn’t have lower-case (at this time
of writing), lower-case characters are of higher weight than upper
case, and would be after the same upper-case characters —
“"BARDEN" would appear before “aardvarke” in a sort of both
upper- and lower-case characters!

1 3 Operations of a Different Sort and Unsigned Comparisons

A A R D V A R K 4 B | L L b 46 5

A A R D V A R K , A N T H O N Y

A A R D V A R K s a n t h o n y | (lower case last)

A A R D V A R K — a n t h o n y | (—aftter comma)

A B L E J A M E s b 4 65 5 45 B

A B L E 1 J A M E S 6 6 46 4 45 -6 |(lafterblank)

A B L E |, J A M E 5§ 6 6 6 4 o b |(commaafter)

A B L E , C H A R L I E ® © 6 1+

A B L 13 R C H A R L 1 E B 4 ® € [(hafterH)

A B L E , 4 O H N 5 5 6 5 6 6

A B L E , J O H N H C o 6 6 b 5

A B L E s J O H N % C A R T E R | (period before C)
l |
| |

H=BLANK

Figure 13-1. Sorted Data

Sorting

How do tables get in order? Suppose that we're entering a list of names as we
think of them. How do we order them? This process is called “sorting” and it
means that we're ordering the data according to some scheme, usually
alphanumeric.

Because sorting long tables or lists of data involves a great deal of processing
and sorting is such a common technique, there are many different sort
schemes — the bubble sort, the two-buffer sort, the Shell and Shell-Metzner
sorts, and others. You might want to look at some of these other schemes in
detail. You can find the "algorithms” in computing magazines.

One of the most common sorts used in assembly language is the "bubble sort.”
The bubble sort operates as shown in Figure 13-2.

Hints and Kinks 13-2
Bubble Sorts

Bubble sorts have two outstanding characteristics: 1. They are hor-
rendously slow. 2. They use no extra space in the sort process.

Because we're using 6809 assembly language, the bubble sort speed
will be acceptable, and we can see the whole process on the screen as
we're using only one sort “buffer”’

You might want to look into some other sort processes. There has
been a great deal written on efficient sorts — books and books worth
of material. If dueling were still in vogue, there'd be dozens of dead
computer scientists, each having perished in defense of his sort.

122

Operations of a Different Sort and Unsigned Comparisons 1

ORIGINAL FIRST PASS
8 8 8 8
1’ 5 DSWAP 5 5
19 ‘)sww 4
4 19 11 D Swap
1 1 1 19
_SECOND PASS
SDSWAP 5
8 43 SWAP
4 8
1 1
19 19
THIRD PASS
4
:) SWAP
5
8
)
19
FINAL PASS
4
5
NO SWAPS-DONE
1
19

Figure 13-2. Bubble Sort Operation

A wble of entries is originally "unordered”

The sort starts with the first two entries and compares them. If the second
entry is of lower “order” than the first, the two entries are "swapped.” If the
second entry is equal to or greater than the first, no swap is made.

The second and third entries are now compared, and a swap is made or the
entries are leftunchanged. This process continues until the last two entries in
the table are compared.

At the end of the first pass, the table entries are usually not ordered. Other
passes that repeat the compare and swap process have to be made. The
swapping continues until the entries are in alphanumeric order.

As the "lighter” entries "bubble” to the top, this sort is called a bubble sort.

We've programmed a bubble sort on the top of the next page:

1 3 Operations of a Different Sort and Unsigned Comparisons

Q120 * RUPRLE SORT

BALA TF DATS 20118 BUBSRT CLR PASSNG SET PASGS # TO @
BALD &E 4RO @12 PUBG1O LDX #4400 POINT TO SCREEN
BA70 103E Q002 22130 I.DY #0 SET CHANGE FLAG TO @
RA74 AL a8a 20140 PURGIG LDA » X+ GET FIRST ENTRY
BA76 Al 84 20150 CMPA s X TEST NEXT
BA78 23 @A 20160 eLs BLRO30 GO IF AI=P
BA7A E6 84 Q0170 L.DE s X GET SECOND ENTRY
BA7C E7 1F 02180 ST =15 X SWAP P TO A
QATE A7 84 20190 STA ’ X SWAP A TO B
PABD 108E Q001 i) LDY #1 SET " CHANGE"
2AB4 8C B5FF BURB3G CMPX #4400+511 TEST FOR SCREEN END
BART7 26 ER BNE PURQZA GO IF NOT ONE PASH
BAB? 7C BAFS INC PASSNO INCREMENT PASGS #
BABC 1@8C Q00Q CMPY #0 TEST CHANGE FLAG
RARD 26 be ENE RURO1Q GO IF CHANGE OCCURRED
DAL TE DAFZ LOOP JIMP LOOR L.OOP HERE
DA [l PAGSNO FCR 2 PAGS #

[raleadralrs} END

QO0Y@ TOTAL ERRORS
EURAIR DALD
BURD2Q QA74
PURG30D DALA
BUBSRT QALA
LOOP QAT
PASSNO QA99

Figure 13-3. Bubble Sort Program

The program works with the text screen, which starts at RAM location $400
(see my Radio Shack book "Color Computer Graphics”for more information
on graphics). The program assumes that this area is a table of data; each entry
in the table is a one-byte entry, so there are a total of 32 bytes in the table.

The bubble sort sorts whatever is on the screen, putting the "lower” order
bytes at the beginning of the screen.

You can use the text from the assembly as sample data, or fill the screen with
ASCII characters using ZBUG. To see how it works, don't breakpoint, but
execute from BUBSRT after assembly. You can press RESET (on the back of
the Color Computer) to get back to EDTASM+.

If you do run the program, notice how the data has been ordered in alphanu-
meric order. The bubble sort is inherently slow, but is fun to watch.

Let's see how the program works. First of all, a warning — we're "flexing our
programming muscles here” and starting to use some of the power of the
6809, so we've thrown in a couple of new concepts. If you've come this far,
though, you shouldn’t have any problem with them!

The inner loop goes from BUB020 through the BNE BUB020 and is used to
“scan” down through the table from beginning to end. At BUB020, X points
to the start of the table at $400. The Y register is set to 0 at the beginning of
each new inner loop pass. If any swap occurs, then it is set to 1. At the end of
the pass, if Y is still set to 0, no swap has occurred and the table is sorted.

The outer loop starts at BUB010 and goes to the end of the program. This
loop initializes X and Y for each new pass at the beginning of the pass. At the
end of the pass, it increments the pass number in “variable” PASSNO, and

124

Operations of a Different Sort and Unsigned Comparisons 1 3

then tests the change flag in Y. If a change occurred, the table is still not
sorted, and another pass is made by looping back to BUB010.

Hints and Kinks 13-3
CLR to Memory

I hate loose ends. Early on in this book we talked about CLRA and
CLRB, but didn't mention a CLR to memory. Yes, you can clear a
memory location by using the CLR instruction in direct, extended, or
indexed mode. It's a convenient instruction to have.

I'here are a couple ()f “tricky” points that hﬂven't been covered up to thiS
y p
pomt. T'hese p()mts are:

e Using the "Auto Increment” feature of indexing
® Labeling a variable location
® Using expressions

® Using unsigned comparisons

“Auto” Incrementing and Decrementing

The first of these points is "auto” increment or decrement. Since the index
registers are constantly changed by plus or minus one, why not make this an
optional feature when using indexing? The 6809 lets you do this, by specify-
ing a + or - after the index register as in the LDA ,X+ instruction above.
However, you can not only increment or decrement by one count, you can
increment or decrement by one or two counts. Here are some examples:

LDA X+ (load A and then increment X)

LDA Y++ (load A and then increment Y twice)

LDA -Y (decrement Y and then load A)

LDA ,--X (decrement X twice and then load A)
Note that the increment is done after the normal instruction operation and is
the same as an "LEA" instruction following the indexed operation, and that

the decrement is done before the normal instruction operation and is the
same as an "LEA” instruction before the indexed operation.

The auto increment and decrement are extremely useful, and are used all the
time.

Hints and Kinks 13-4
More on Auto Increment and Decrement
Auto increment and decrement and displacement (offset) indexing

(as in LDA 30,X) are mutually exclusive, that is, you can’t have an
instruction such as LDA 30,X++.

1 3 Operations of a Different Sort and Unsigned Comparisons

Labeling a Variable Location

We used a RAM location here to store a count of the number of passes that
were made through the bubble sort. We could have used an “absolute”
location such as $3000, but chose instead to use a location close to the
program. You can refer to any variable or constant by a symbolic name
instead of an absolute value, and, in fact, this is the preferred way to use
variable storage.

To examine "PASSNO" at the end of the bubble sort, write down the location
of PASSNO from the symbol table listing at the end of the assembly and use
the ZBUG slash command, or simply use

HPASSNO/

to examine the contents.

Using Expressions

You'll note that we used an expression in the source code above, #$400+511.
This expression defines the last location of the text screen. When EDTASM+
encounters the expression it will easily compute the value $5FF and use that
value as the immediate data value in the CMPX instruction. EDTASM+
is very capable of using not only expressions with adds and subtracts, but
other "operators” as well. We'll go into more detail about this in following
chapters.

Hints and Kinks 13-5
Expressions

There are a number of "operators” that can be used in both ZBUG
and the assembler portion of EDTASM+. Along with + (addition or
sign of number) and - (subtraction or sign of number), you can also
multiply (%), divide (DIV.), find the modulus (MOD.), logical shift
(<), AND (LAND.), OR (.OR.), exclusive OR (.XOR.), and com-
plement (NOT.). You can also use the two relational operators for
equals (.EQU.) and not equal (.NEQ.). See the EDTASM+ manual
for more details.

As a practical matter, the operators you'll be using most frequently in
Color Computer assembly-language programming will be:

e Addition/subtraction, as in
TABLE FDB $400+DISP-1

® Multiplication or division, as in

TABLE FDB I6xNENT
LOCA FDB SIZE/2

e Shifting, as in

Operations of a Different Sort and Unsigned Comparisons 1 3

TABLE FDB 13<8 SHIFT 8 BITS LEFT
FDB LOCA<-8 SHIFT 8 BITS RIGHT

The other operators are embellishments, and not used as frequently,
except for special cases (or by my cousin, who happens to be a
modulus freak).

Using Unsigned Comparisons

The CMP can be used to compare two bytes in unsigned fashion as follows:
The compare compares A with another operand, call it B, by subtracting B
from A: A-B.

If A is less than B, the Carry Condition Code will be set (CS). If A is equal
to or greater than B, the Carry Condition Code will be reset (CC). This
condition always applies for a CMP, or for an SUB.

You really don’t have to remember all of this! Just use the proper mnemonic
in the BR instruction as detailed in Chapter 8. We used "BLS™ in the program
above to branch if the A operand was “less than or the same™ as the B
operand. You must know, though, whether you're dealing with two’s com-
plement or unsigned (absolute) numbers when choosing mnemonics as
described in Chapter 8.

A Bubble Sort of A Two-Byte Entry Table

We'll continue in this vein with the following problem: Suppose you had a
table made up of two-byte entries at the text screen locations $400 through
$5FF, as shown in Figure 13-4,

5 ENTRIES
A

$400¢ﬁ[| sy s[t E]X\ﬂ

TEXT
SCREEN
$SFF

$400
4 ENTRY @ 4 LINE 8, CHARACTER POSITION &

1
2 1 L 0 1

3
4 4 2 4 [2

5

Figure 13-4. Two Byte Entry Table

1 3 Operations of a Different Sort and Unsigned Comparisons

How would you write a bubble sort to work with these two-byte entries?

Hints: You'll want to use the D register as the "accumulator” and compare to
memory for the second operand. You could use either X or Y to point to the
table entries, incementing the index register by two after each comparison.
You'd also need to hold a “change” flag in a memory variable.

Here's the answer: There are many ways to do this, so if your ideas are
different than this one, don’t let it bother you. The one we've come up with is
this:

20100 * BUPBLE SORT FOR TWO-BYTE TABLE

PALE BE 2400 20110 BUBSRT LDX #4400 POINT TO SCREEN

RAZ1 7F PA45 20120 CLR CHANGE RESET CHANGE FLAG
PAZ4 EC 81 201390 PUBBL1 LDD 1 X++ GET FIRST ENTRY
DAZ6 10A3 84 20140 CMPD » X COMPARE

@Az 23 ap @152 BLS BuB@2z1 GO IF A<l=R

DAZE 10AE B4 20160 LDy 2 X GET 2ZND ENTRY

@AZE ED 84 va170 STD 1 X SWAP ENTRIES

BA3G 10AF 1E o180 STY =23 X

BA33 BS a1 20190 L.DA #1 ONE

0A35 R7 BA45 00200 STA CHANGE SET CHANGE FLAG
BA38 8C @5FE 20:10 PUBA21 CMPX #$400+510 TEST FOR END

BA3E 26 E7 20220 BNE BURQ11 GO IF NOT ONE PASS
BA3D Bé& 0A45 20230 LDA CHANGE TEST CHANGE FLAG
BA40 26 DC BBZ4D BNE BUBSRT GO IF CHANGE OCCURRED
BA4Z 7E DA42 20250 L.OOP JMP LOOP LOOP HERE

BA4S 7} 20z6@ CHANGE FCB a INITIALLY @

200 20:z70 END
20000 TOTAL ERRORS

BUB@11 QAZ4
BURBZ1 0A38
BUBSRT QAILE
CHANGE BA45
LOOP DA42

Figure 13-5. Bubble Sort for Two-Byte Table Program

Here we used an auto increment of “++” which increments the X register by 2
after the first entry is loaded. X now points to the next entry, 2 bytes
following. Notice that the “swap” is done by using a displacement of -2, to
point back to the original entry location.

Hints and Kinks 13-6
The Two-Byte Entry Table Sort

If you run this sort you'll see sorted data on the screen grouped in two
bytes. A typical sequence on the first line might be
"“"AAACAEAO0A2A4AGA8BS. ..’ corresponding to
AA/AC/AE/A0/A2/A4/AG/A8/BS. ..

We'll leave it up to you to investigate this program in detail using ZBUG,
except for one important point: What does the LDY ,X do and is it legiti-
mate? The answer is that it loads the Y register in the same way D is loaded,
and yes, it is proper to load the Y register in the indexed mode. As a matter of
fact, X, Y, S, and U can all be used as index registers and can do indexing;
we'll be investigating this topic in a later chapter.

128

Operations of a Different Sort and Unsigned Comparisons 1 3

Review

To review what we've learned in this chapter:

Tables may be ordered in alphanumeric or other order
The order may be "ascending” or “descending”

Many tables are in alphanumeric and ascending order
Various types of sorts are used to put tables in order

The bubble sort works by comparing pairs of entries in a table and
swapping if the first is of higher value than the second

The Carry Condition Code can be used to compare two values in CMPs,
SUBs, or SBCs

The Carry Condition Code is set (CS) if the first operand is less than the
second operand and reset (CC) if the first is equal to or greater than the
second; normally you don't have to be aware of when the Carry is set
because of BR “"mnemonics”

For Further Study

Carry Condition Code setting for CMP, SUB, SBC (Appendix II)

129

KEY CHART — CHAPTER 14

INSTRUCTIONS EDTASM+ EDITOR COMMANDS
ABX- BHS -StRE8——B5- ROL ALSSEMBLES HAS T RERLACE
ADCA —BHA CLHF +Bt RORA G(EoRG— AL

-ADCH BHB —~EMPA +BX RORB MELETE) MQVE) MERIEY)
—ABDA Bt EMPB +B¥ ROR EHBHF— AHLAMBER- MYRITE)
ABPB +BEE— SMPD +EAS—- RTI FHNDBS RLRINTS ~2BLGY
-APPH BtO €MPS t+FAtY- RTS FHARBCORY) QT
ANBA- +B+6—- €MPY +EAX- SBEA
ANBD- B3 CHPX tLESALA’ 3868 EDTASM+ ASSEMBLER COMMANDS (A)
ANDCC LBLS- CMRAY SEX- /AO ABSOLUTE ORIGIN /NO NO OBJECT
ASLA BLT COoMA LSLB S¥A-
ASLB +BiLF G6MB LSL S¥8- 5‘!‘“‘2"‘;‘””';5‘2“9%&“3*‘;;” TER /M—Ws SHORT SCREEN
ASL BM+ 88M- LSRA SFB- 0 MANUAL ORIGIN AT ON—ERRORS
ASRA -+BM+ CWAl LSRB -S¥5 /NL NO LISTING
ASRB BM— DAA LSR SF-
ASR +LBNE BEGA MUL SFX
B66 BPL DEGCB NEGA SF¢ EDTASM+ ZBUG COMMANDS
LBCG- LBRL DEG- NEGB- -SUBA- ArSGHDISPLAY— FRHSPEAY-BEOEK
BCS -BRA EORA -NEG SUBB- BTFEMODE T HARBCORY-BO6
+BES +BRA— FORB- NOP Stiep- C(ONTINUE) L MOUE- BLOCK—
-BEG— “BRAN— X6 ORA SwWI -BHSREAYS-
—BFG- +BRAN- HEA ORB8~ SWi2 EBHOER} W(ORD) MODE
-BGF BSR NEB- TOREE- SWI3 -Gf&)— KX—BREAKROINF-
—+B86Ff LBSR e PSHS SYNC H(ALF) SYMBOLIC X AANK—BREAKRONF
BEF —BYEe— P PSHU -FFR- HARUT}-BASE— SR XAMINE-PREGEDIN
-+BG+ -tB¥E- JSR -PULS FS¥A— —HOADJMLFHE— —EXAMINE NEXT
—H— A A PULU Fe¥s~ M(NEMONIC) MODE — BRANCH INDIRECT
+BH —+BYS—- AB8 ROLA FSF N(UMERIC) MODE ; FORCE NUMERIC
BHS~ GFRA- ¢+PB— ROLB B{OUTFPUTFBASE- = RORGENHAERICBH
_P_SAVE ML ON-TARE- . FORCE FLAGS
RECHSFERHHSPLAY S EXAMINE—
g D DRESSING MODES S(YMBOLIC DISPLAY) —SINGLE STER-
BIRECF—
EXTFENBED- GENERAL TOPICS
IMMEDIATE GRH-REGHSFERS— SUBROUTINES
SHARLEANBEXED— BATA—TFO-REGHSTFFRS— STACK OPERATIONS
AELATHE- LOADINGAND-STORING— ROTATES, SHIFTS
BISPEACEMENTINBEXED— ADBHHON-ANB-SUBTFRAGHON MULTIPLES
ALHTFOANCREMENTHOECREMENT— -CONDHHON-COBES DIVIDES
INDIRECT —SYMBOLIC ADDRESSNG— DECIMAL ARITHMETIC
SOPHISTICATED FHAPS —BRANCHES— BASIC INTERFACING
RELATIVE BRANGHES~ PASSING PARAMETERS
INGREMENTS/BECREMENTS VARPTR USE
.y PSEUDO OPS ORG COMPLEMENTS- ROM SUBROUTINES
LOGICAL OPERATIONS— OTHER ADDRESSING
FE8 AMB MULTIRLE PRECISION- GRAPHICS
F6€ SET DATA VALUES— SOUND
F58 SEFD HNDEXHNG- LARGER PROGRAMS
INDEX NG T~
SORTING—

Bold Type = Present Chapter
Regular Type = Future Chapters

HalicType = Past Chapters
130

Chapter 14
Using Subroutines in Assembly Language

Subroutines are segments of code that exist in one place in memory. These
sequences of code can be executed by temporarily transferring control to the
code segment.

Subroutines may be from one to thousands of instructions long. If any set of
instructions is executed more than one time, the instructions may be made
into a subroutine in one place in memory to save memory space, and to save
time in “coding’’

The whole process is virtually identical to the BASIC GOSUB process. In this
chapter we'll look at how subroutines are used and which instructions are
involved.

Subroutine Basics

A subroutine is “called” by a "Branch to Subroutine” or BSR instruction; an
RTS instruction marks the end of the subroutine. A simple “timing loop”
subroutine, for example, might be something like:

20102 * DECREMENT X DOWN TO @ AS TIMING LOOP
o8Dne 86 B1 Q2110 TIMELP LDA #177 COUNT IN A
@8DD 4A P@1z0 TIM2I@ DECA INNER LOOP
A8BDE 26 FD 22130 BNE TIMO1@ GO IN NOT @
B8E® 302 iF 20140 LEAX 1 X OUTER LOOF
@8E: 26 F7 20150 ENE TIMEL.P GO IF NOT 0
@28E4 39 20160 RTS RETURN

[ralraleila} 20170 END

00202 TOTAL ERRORS

TIM@1® @8DD
TIMELP @8DP

Figure 14-1. Simple Timing Loop

This timing loop might be called every time that you wanted a delay in the
program; it delays about 1/1000 second (1 millisecond) for every countin X,
to show you how fast assembly language is. A typical call would be

LDX #200 LOAD TIMING COUNT
BSR TIMELP DELAY 200 MILLISECONDS
RETURN HERE

Hints and Kinks 14-1
The Timing Loop

Timing loops are used quite frequently to time such things as
cassette tape and RS-232-C input/output drivers, any function
which must have a correlation to “real time” Appendix I lists the
cycles (wavy line) for each instruction and addressing type. To find
the total time of execution of an instruction, multiply the cycle time
by 1.124 microseconds (millionths of a second) on the Color Com-
puter. You can construct your own timing loops by counting the

14 Using Subroutines in Assembly Language

times for each instruction and inserting the proper “padding” to
round out a loop to a convenient unit of time, as we've done in the

TIMELP program.

As you can see from the above, a return is made to the instruction after the
BSR. The 6809 records the location of the next instruction after the call by
taking the contents of the PC (Program Counter) and saving it in the “stack;’
an area of RAM. The RTS instruction retrieves the location from the srack
and puts it back into the PC to cause a jump back to the location after the BSR.

Let’s investigate what the stack is and where it is located to see how the BSR
and RTS work. Look at this program:

293p. BE B3ER Q0100 START LIDX #1000 DELAY COUNT
@93E 8D a3 20110 BSR TIMELP CALL DELAY
2?40 7E a340 Q@1 2@ LOOFP JMP LOOP LOOP HERE

00130 * DECREMENT X DOWN TO @ AS TIMING [.OOP
Q943 8Bé4 B 20142 TIMELFP LDA #177 COUNT IN A
A945 4A 20150 TIMA10 DECA INNER LOOP
Q944 b FD 20160 BNE TIMQ1IG GO IF NOT @
D948 30 1F a017a lLEAX -1sX OUTER 1.00P
2244p 26 F7 20180 BNE: TIMELP GO IF NOT @&
B24C 39 Y1950 RTS RETURN

[nluldg gl EXND

20000 TOTAL ERRORS

LOOP 742
START Q3B
TIMQIO @945
TIMELP @943

Figure 14-2. Timing Loop Program

If you assemble and execute the code above, you be should be able to see how
the stack works. Breakpoint at HERE:

xA/IM

*Z
H#XLOOP
HGTSTART

After the breakpoint is reached, use the R command to look at the 6809
registers. Look at the contents of the S register. The S register is the register
which points to the current location of the stack. Take the address in the S
register and subtract 4 from it, and then examine the locations at the stack
area. You'll have something like this:

0 BRK @ LOOP

#R
A=00 B=00 DP=00 CC=80 =E
X=0000 Y=0000 U=0000 S=0777
PC=084E

#B

#773/ 0

Using Subroutines in Assembly Language 14

774/ 0
775/ 8
776/ 4F
777/ 0

Here's what should happen when you execute the program: The S register
pointed to a stack area in ZBUG.

The BSR jumped to location TIMELP. The jump action is the same as a BRA
as far as the transfer of control.

The BSR, however, does one more thing. If you look at locations $775 and
$776 (or the locations in your example, which will probably be different),
you'll see the address of the return point after the BSR. The BSR has stored
the return point by using the S register as a pointer.

Look at the contents of the S register. It is now 2 counts higher than where
the return address was stored.

The S register is automatically decremented by 2 for every return address
stored in the stack area. The “stack area” in this case started at $777 and
“builds” down, as the BSR decrements the SP register by 2.

As soon as the subroutine (timing loop) is over, the return address is loaded
into the PC from the stack as the RTS is executed. At the same time, the S
register is incremented by 2. After the RET, the S again points to location
$777, and the instruction after the BSR at LOOP is executed.

The S Stack

The operation above is pretty typical of how the stack is used for subroutine
calls. The stack can be any area of memory that will be unused by the system
or by your own program. Of course, it has to be RAM, as we're both reading
and writing into it by BSRs and RTSs.

The stack area is normally set once at the beginning of the program, by the
LDS #3778

or similar instruction. Note that the S register is loaded with one more than
the first stack location used. The S register is always decremented first,
before the store of the BSR address.

Normally, you don’t have to worry too much about setting the S register.
BASIC, EDTASM+, and other programs always set the S to the stack area
used in their programs, and it's available for everybody else’s use too.
Sometimes, though, you want to control the stack yourself, and in that case
you'll use the LDS to point to your own stack area.

Normally the stack area should be about 100 bytes or so. All this means is that
you must make certain that the S register is set to the last location of a
memory area that won't be used by anything else.

133

14 Using Subroutines in Assembly Language

Hints and Kinks 14-2
The S Stack

The S stack is the dedicated "hardware” stack of the 6809. It is
specifically designed to hold the return point addresses for BSR,
LBSR, and JSR subroutine “calls;” along with other functions.

There is a second stack, the U(ser) stack in the 6809. The U stack is
never used by the "hardware” to store return addresses, but is an
optional stack which the user defines for storage of temporary data,
indexing, or block operations.

Nested Stack Calls

Nort only can you BSR a single subroutine, but that subroutine can BSR
another subroutine, and that subroutine can BSR another, and so forth. How
many BSRs can you make? Theoretically, as many as you want. Each time you
make a BSR, another return address is saved in the stack, and that takes 2
bytes. If you have 10 “levels™ of subroutines, you've used up 20 bytes of the
stack, and the S register points to the original location minus 20 bytes.

Let's see an example of a "nested” set of subroutines:

* NESTED SUBROUTINES

NESTSR BSR SUBR1 CALL SUBROUTINE 1
LOOP JMP LOOP RETURN POINT 1
SUBRI BSR SUBR2 CALL SUBROUTINE 2

RTS RETURN POINT 2
SUBR2 BSR SUBR3 CALL SUBR 3

RTS RETURN POINT 3
SUBR3 BSR SUBR4 CALL SUBR 4

RTS RETURN POINT 4
SUBR4 RTS RETURN

END

If you assemble and execute this program, breakpointing at LOOP, locate the
stack area by looking at the contents of S, and then examine the stack area,
you'll see something like this:

The BSR SUBR1 should have stored the address of the JMP LOOP instruc-
tion into the upper two stack locations.

SUBRI consists of another BSR, to SUBR2. This should have stored the
address of return point 2 into the next two stack locations.

134

Using Subroutines in Assembly Language 14

SUBR2 consists of another BSR, to SUBR3. This should have stored the
address of return point 3 into the next two stack locations.

SUBR3 consists of a fourth call, to SUBR4. This should have stored the
address of return point 4 into the next two stack locations.

At this point the stack area appears as shown in Figure 14-3. The four return
points are "4 levels deep” in the stack, and the S register points to a location 8
bytes down from the original value.

-
-8 | RETURN ADDRESS _|~+—— NEW POSITION OF
- FOR BSR SUBR4 S POINTER
-6 _| RETURN ADDRESS |
5 FOR BSR SUBR3
4 LEVELS <
-4 | RETURN ADDRESS |
3 FOR BSR SUBR2
-2 | RETURN ADDRESS
p FOR BSR SUBR1
N

~4— — — ORIGINAL POSITION
OF S POINTER

Figure 14-3. Stack Area Example

You'll be able to see all of the return addresses by looking at the stack area and
comparing the addresses to the addresses in the assembly listing or the
symbol table.

When the RTS in SUBR4 is executed, the RTS causes return point 4 to be put
into the PC, causing a branch to return point 4. The stack pointer now points
to a location 2 bytes higher.

Return point 4 is also an RTS, causing a branch to return point 3, and
resetting the S register to a location 2 bytes higher.

Return point 3 is also an RTS, causing a branch to return point 2, and
resetting the S register to a location 2 bytes higher.

Return point 2 is also an RTS, causing a branch to return point 1, and
resetting the S register to its original setting.

This type of nesting is very common in many programs. Of course, this

135

14 Using Subroutines in Assembly Language

program does nothing except to illustrate the stack, and normal programs
would have a great deal of “code” between the entry to the subroutine and the
next BSR or RTS.

Usually you won’t use more than about 3 or 4 levels of subroutines. It's just
too hard to keep track of where you are if you use more, and usually not
necessary.

A BSR for Every RTS

If you look at the program above, you'll see a RTS instruction executed for
every BSR executed. If there wasn’t an RTS for every BSR, what would
happen?

The answer is that the stack would get “out of sync” The wrong return point
would be picked up on a RTS. If you repetitively call the stack with this
condition, you'll soon run out of stack as the stack "built down” and into
another memory area, probably part of your program, or a system program.
That will put "garbage” (in precise programming terms) into the program
area and cause your program or the system program to blow up.

This condition is called stack overflow (or underflow, depending upon which
direction the stacks goes out of bounds) and is a common programming bug!

For example, if you had:

EXAMP BSR SUBR1 BRANCH TO SUBR
SUBR1 R SUBROUTINE
CODE HERE
BRA EXAMP SHOULD BE RTS!

the BRA back to EXAMP would cause SUBR1 to be called again, putting the
return point in the next two bytes, and this would continue indefinitely with
the return point being stored in lower and lower locations until the stack
overflowed into a program area.

Hints and Kinks 14-3
An RTS for Every BSR?

Most of the time you will have an RTS for every BSR, especially in
these simple programs. However, it’s not really necessary to have an
RTS for every call, as long as the S register is “reset.” In lieu of an
RTS for a single-level stack call, for example, you could do an LEAS

136

Using Subroutines in Assembly Language 14

2,S which would add 2 to the S register, an action identical to the
arithmetic action of an RTS. This concept could be expanded for any
number of levels or stack usage.

Other Branch To Subroutines

The BSR instruction is a relative addressing instruction identical to the other
BRs as far as the displacement field and "range’’ As with the other relative
branches, the BSR has a “long branch” form so that a BSR can be done
anywhere in memory without having to worry about being out of displace-
ment range (128 locations back or 127 locations forward from the return
point):

LBSR WAYOUT LONG BRANCH TO SUBR

There’s also a “Jump to Subroutine” or a JSR. Why have two forms of an
unconditional branch to a subroutine? The JSR is a leftover from the 6800,
the predecessor of the 6809. The JSR always assembles with an absolute
address in the instruction rather than a “relative” displacement. For reasons
that we’ll get into in a later chapter, this type of instruction is not “position
independent” or “relocatable’” It's probably best to always use the LBSR
rather than the JSR. Figure 14-4 shows an assembly of the two types and
shows the format of each.

288k 17 226 2110 LESR Sue1 LONG BRANCH BSR

@88E BD 2874 o120 JSR SUBR1 EXTENDED ADDRESSING

2891 7E 2891 80130 LOOP JMP L.OOP

@874 39 20148 SUB1L RTS DUMMY SUBROUTINE
2000 20150 END

Q0008 TOTAL ERRORS

LOOP 2891
SuUB1 2894

Figure 14-4. JSR Vs. LBSR

Review
To review what we've learned in this chapter:

e Subroutines are a collection of instructions that are used more than once
but are in one location in memory

Subroutines save space and coding time

Subroutines may be from 1 to many instructions long

Subroutines are called by a BSR, LBSR, or JSR instruction and ended by an
RTS instruction

A BSR, LBSR, or JSR saves the address of the instruction after the BSR,
LBSR, or JSR in the stack

137

1

4 Using Subroutines in Assembly Language

AnRTS gets the last return address from the stack and causes a jump back
to the return point

The stack area in memory is any convenient memory area that can be set
aside for stack actions

The S (hardware stack pointer) points to the stack area

The stack area "builds down™; each BSR, LBSR, or JSR stores 2 bytes of the

return address into the next 2 lower stack locations
Subroutines can be “nested” as often as required

There must be an RTS executed for every BSR, LBSR, or JSR, or at least an
adjustment of the S register pointer

For Further Study

Instruction formats for BSR, LBSR, JSR, and RTS (Appendix 1)

138

KEY CHART — CHAPTER 15

INSTRUCTIONS EDTASM+ EDITOR COMMANDS

+BHS GERB—EBS- ROL A(SSEMBLES #N-SEH—F) REFPLACES
BIFA SR +PY~ RORA -GLoRY¥- FHHARDCORY—

GMPA- 5% RORB -BHELEFES -Mf%—

eMPB +B¥ ROR &t AMBERS WE’

EMPD +FAS— RTI FHNDT —PHRINTS

EMPS- +EAH RES- HARDEOPY- —QrtHF— ZB867

EMPH +EAX SBCA-

oMAY tLESLA’ SSBEXGB EDTASM+ ASSEMBLER COMMANDS (A)

ooma LS X /AO ABSOLUTE ORIGIN JNO NO OBJECT

-COMB- LSL -S¥B HAANMEMORY-ASSEMBLY— NS-NO-SYMBOL TABLE

P LINE PRINTER— 7SS SHORT SCREEN
€OM LSRA —&FB- 5 MANUAL ORIGIN JWE WAL ON-ERRORS

CWAlL LSRB S¥§ N NO LISTING

ST o

PECA
DEGB MNEGA -SIY EDTASM+ ZBUG COMMANDS
BEES- NEGH SUBA ARSCHDISPLAY T DISPLAY BLOCK-
£ORA -NEG- -SUBR BIYFEIMODE I H-HARDCORY BLOGK.
£6RB NOR -ouBo- C(ONTINUE) HMOVE BLOCK—
paas GRA SWi BHSPLAYS
NCA- -ORE- SWi2 EBHER- W(ORD) MODE
NEB BREE- SWI3 GO X—BREAKPOHNTF—
+46 PSHS SYNC H(ALF) SYMBOLIC YAANK) BREAKPOINT—
AP PSHU ~FFAR- HNPUT) BASE +—EXAMINE—RRECEDINGS
SR PULS rFSFA- LOADS ML FILE A EXAMINENEXT
+BA PULU #578— M(NEMONIC) MODE — BRANCH INDIRECT
55 ROLA FS+ N(UMERIC) MODE ; FORCE NUMERIC
+55- ROLB OLOUTRUT BASE-
P SAVE ML ON—FARE- . FORCE FLAGS
REGISTER)-DISPLAY —— EXAMINE.
ADDRESSING MODES S(YMBOLIC DISPLAY) — SINGLE STEP
REGF
FENDED- GENERAL TOPICS
MEBHATE CPU—REGISFERS SHBROUTFHES—
WRLENDEXED- DATA-FO-REGISTERS— STACK OPERATIONS
AFHAE LOADINGAND STORING— ROTATES, SHIFTS
SRLACEMENTANDEXED ADBHHONAND-SUBFRACHON MULTIPLES
HOINCREMENT/DECREMENT— GONBHHON-GOBES DIVIDES
DIRECT SYMBOLIC ADDRESSING DECIMAL ARITHMETIC
PHISTICATED JUMPS_BRANGHES BASIC INTERFACING
RELATIVE BRANCHES- PASSING PARAMETERS
INCREMENTS/IDECREMENTS- VARPTR USE
PSEUDO OPS COMPLEMENTS ROM SUBROUTINES
| ORG LOGICAL ORERATIONS- OTHER ADDRESSING
TS RMB
MULTHPLE RRECISHON— GRAPHICS
6 SET BAFAYALHES SOUND
L SEFOF— NDEXING— LARGER PROGRAMS
INDEX NG W FH—X Y-
SORTING-

id Type = Present Chapter

jgular Type = Future Chapters

licIype = Past Chapters

139

140

Chapter 15

Using the Stack to Hold
Temporary Results

The S stack is not only used to hold the return address for subroutines, it can
also be used as temporary storage to supplement the cpu registers. In this
chapter we'll take a look at the 6809 instructions that "push™ and “pull” data
from the S stack area.

Stack Uses

In the last chapter we said that the stack was used for storage of addresses
when a BSR was executed to a subroutine. There are actually three uses for
the stack:

® Saving return address for BSRs
e Saving temporary data for PSHS and PULS use
® Saving the interrupt point for interrupts

We've already described what happens in BSRs, but we'll talk about the other
two uses here.

Interrupts

One of the two uses of the stack is somewhat esoteric. Interrupts are external
or internal inputs to the system that signify a "real-world” event. One
example might be an interrupt from a remote keyboard. During the time that
no key is pressed, the program would run normally. When a key was pressed,
however, an “external” interrupt could be generated that would cause the
6809 cpu to stop processing after the current instruction, and to jump to a
special interrupt processing routine.

The interrupt processing routine is simply another assembly-language pro-
gram that would take the required action for the external interrupt. In this
case, the remote keyboard interrupt handler would probably read in the
character from the keyboard and store it in a "buffer;’ or storage area.

The interrupt action itself causes the interrupt point to be put into the stack
in a very similar fashion to the BSR. An RTL, or Return From Interrupt,
instruction at the end of the interrupt processing program would retrieve the
interrupt point address from the stack and put it into the PC register in an
almost identical action to a normal RTS.

Interrupts are used primarily to let the 6809 number crunch away on a
“background” job, such as running a business package, while a high-priority
“foreground” task infrequently interrupts for a response to its action.

Another example of interrupts is the “real-time” clock interrupt. This
interrupt occurs every 16 2/3 milliseconds or so (16.667/1000ths of a
second) and causes the RTC interrupt processing routine to be entered. The
RTC interrupt processing increments a count which is used to keep time in
the system.

141

1 5 Using the Stack to Hold Temporary Results

We won't be discussing interrupts any further in this book. Suffice it to say
that they are used infrequently in applications programs and are most used in
special systems software.

Hints and Kinks 15-1
More on Interrupts

Since you're really interested in interrupts we'll whet your appe-
tite. . . Actually an interrupt causes more than just the the address of
the next instruction to be pushed into the § stack — it also causes the
Condition Codes to be saved, and for certain interrupts in the 6809
causes all of the cpu registers to be saved. The former is a “fast
interrupt, or FIRQ, and the latter an IRQ, compatible with the 6800.
The FIRQ improves the interrupt response time of the 6809.

The RTI instruction is used to return from an interrupt the same
way that an RTS returns from a subroutine. The RTI pops the return
address, the Condition Codes, and the other cpu registers (if an IRQ
occurred) from the stack to return to the interrupted point. Where is
the interrupted point? It could be anywhere. Usually interrupts
occur and the "background” program is not even aware that they
occurred as the “interrupt processor” saves all of the "environment”
(i.e. Condition Codes and register contents).

There are two interrupt bits in the Condition Codes which enable or
disable the FIRQ or IRQ interrupts. They are in bit 6 and 4 of the
Condition Code.

You will never have to worry about interrupts in your programming
until you get to some intermediate or advanced assembly-language
programming,.

PSHSes and PULSes

The remaining use for the stack, however, is used all the time. A PSHS
“pushes” one or more 6809 registers onto the stack, while a PULS "pulls” one
or more bytes of data from the stack and puts it into one or more registers.

Why the “PSHS™ and “PULS"? The stack can be thought of as a “push-down
stack™ similar to a dinner plate stacker in Joe's Greasy Spoon. A PSHS or BSR
pushes one or more plates onto the stack. Further plates can be pushed on top
of the previously pushed plates.

A PULS or RTS "pops up” the last one or more plates pushed. Successive
PULSes or RTSes pop up the stacker until no plates are left.

The "minimum” PSHS is
PSHS CC or

142

Using the Stack to Hold Temporary Results 1 5

PSHS A or
PSHS B or
PSHS DP or
PSHS X or
PSHS Y or
PSHS U or
PSHS PC

One of the above PSHSes pushes one byte (CC, A, B, or DP) or two bytes (X,
Y, U, or PC) onto the stack. What about PSHing multiple registers onto the
stack? Easy, just combine all the registers you want to PSHS into one
instruction; if you want to PSH CC, A, and X, do a

PSHS CCAX

with the registers specified in any order (you could do a PSHS X, A,CC, for
example).

The same thing holds true for PULSes. To pull data from the stack and put it
into registers, do a PULS with one or more registers specified. One or two
bytes will be pulled for each register, depending upon the size of the register:

PULS A GET A
PULS XU GET X,U
PULS PCU,CCA GET PC,U,CC, AND A

Again, the registers may be specified in any order.

To keep things straight as to how the registers appear on the stack for
multiple PSHSes and PULSes, there is a predefined order for data PSHSed or
PULSed from the stack. The PSHS order is

CC,ABDPX Y U,PC
first last

The PULS order is the reverse
PCU,Y, X DPB,A,CC

All this means to you as the programmer, s that you know the order in which
multiple registers are pushed onto the stack, and you can be certain that any
PULS is done in compatible fashion.

Hints and Kinks 15-2
Multiple PSHSes and PULSes

If you do a multiple PSHS, just be certain you know what registers
143

1 5 Using the Stack to Hold Temporary Results

are on the stack. The order is predefined by the PSHS action. When
you do the corresponding PULS, you would normally use the same
registers, otherwise you may pull more or less bytes than you pushed.
If you don’t use the same registers, the same number of bytes must be

PULSed as pushed. This is all right:

but this is not:

(ABto X, X t0Y)

PSHS ABX
PULS XY
PSHS X,Y
PULS AY

(retrieves one less byte)

Often there is a corresponding PULS for every PSHS.
Let's see how the PSHSes

PB5C
BESE
oB61
PBL3
0B65
Be67
2B6A
PR6C
@R6F
oe71
@e73
oBR75
@ae76
or78
@B7A
27D
PR7E

22008 TOTAL ERRORS

86
R7
Ab
34
Ab
B1
24
B7
33
34
30
5A
26
35
Bé&
39

LOWEST
SCANTY

SCNO
SCNO

1@

ped’

FF
RB7E
84
19
84
PB7E
07
OR7E
40
10
o1

ED
10
@B7E

20
i)

PE7E
oBscC
PELS
PB73

20100
20110
20120
20130
PB140
a0150
280160
0170
20180
20190
[l [}
20210
P0z20
22230
B2240
20250
20260
00270
8080
20290
20300
20310
o320
a33e
22340

and PULSes work.

EE LR 22 s 2SS 2SR SS RS SSELSSS SIS LSS LR 3

* SCAN TABLE FOR SMALLEST ENTRY SUBROUTINE

* ENTRY:
*

* EXIT:
*

(X)=>TABLE

(B)=8IZE OF TABLE 1-253,0=256
(X)=:BMALLEST ENTRY IN TABLE
(A)=8SMALLEST ENTRY

* Kk koK

6 H AN I A W I I I I WA WK I I I KWW I I KKK KN N

SCANTY LDA
STA
LDA
PSHS
SCN@1® LDA
CMPA
BHS
STA
PULS
PSHS
SCNBz@ LEAX
DECR
BNE
PULS
LDA
RTS
LOWEST FCB
END

H#EFF
LOWEST
s X

X

s X
LOWEST
SCNOz0
LOWEST
V]

X

1:X

5CNO1D
X
LOWEST

2

SET UP LOWEST
SET LOWEST
GET FIRST BYTE
INITIALIZE STACK
GET BYTE
COMPARE WITH LOWEST
GO IF C>=A
NEW LOWEST
PREVIOUS PNTR
SAVE THIS LOC’N
POINT TO NEXT BYTE
DECREMENT COUNT
GO IF NOT END
GET POINTER
LOWEST IN A
RETURN

Figure 15-1. Scan Table for Smallest Entry Program

If you're trying to enter this code, don't try to execute this program at this
point.

This program is a complete subroutine, as we talked about in the last chapter.
It is a complete set of code to perform one specific function, to scan a table for

144

Using the Stack to Hold Temporary Results 1 5

the smallest byte in the table. If we had a table consisting of the one byte
entries of 45,3,47,89,100,2,3,4,56, the subroutine would find the 2 entry in the
table.

It's common to divide a large programming job into many different subrou-
tines, each performing a simple function. Another trick that’s used is to make
each subroutine as "generic” in nature as possible. In this case, we didn’t limit
ourselves to any table, or any size table. We left the location and size of the
table variable!

The location and size of the table are called parameters that are input to the
subroutine. On entry into the subroutine, the X index register points to the
table start, and the B register holds the size of the table.

Onexit, the X register points to the location of the smallest entry in the table
and the A register holds the actual entry itself. These are the output
parameters.

“Parameters” might be called arguments, or “gozintas” and “gozoutas’

Hints and Kinks 15-3
Subroutine Parameters

One way of passing parameters is to put the arguments in cpu
registers and call the subroutine. Another way is to pass the parame-
ters in a predefined “common” area. Sometimes the Z Condition
Code is set or reset on return from the subroutine to denote a “valid”
or “invalid” condition from the subroutine. The BSR and RTS
instructions do not affect the Condition Codes.

Because we've made SCANTY general, we can use it to scan any table of any
size and it becomes a “general-purpose” subroutine.

SCANTY uses PSHSes and PULSes for temporary storage. Let’s see how it
does this.

First of all, X contains a pointer to the table on entry, and B contains the size
of the table. The table is made up of from 1 to 256 one-byte entries. If B is
initially O, it denotes a 256-byte table.

The first thing that SCANTY does is to pick up the first table byte. This may
turn out to be the lowest-valued byte, but probably isn’t. The location of this
byte (location in X) is then PSHSed onto the stack. The stack now looks like
Figure 15-2.

145

1 5 Using the Stack to Hold Temporary Results

LOW MEMORY

BYTE LOCATION l——S POSITION AFTER
T~ FROM PSHS X T PSHS X

RETURN ADDRESS =+ — -S POSITION AT
FOR JSR SCANTY | LOCATION “SCANTY”

-+—-—S POSITION BEFORE
SCANTY CALL

HIGH MEMORY

Figure 15-2. Stack after SCANTY

The loop from SCNO10 is the main (the only) loop of SCANTY. It wilt go
through the table and compare each byte with the current low byte. If any
byte is lower than the current low byte, it will be stored in variable LOWEST
and its location will be saved in the stack. We're starting off with the first byte
and its location as an arbritrary initial value.

In the loop: The next byte is picked up and put into A. A is then compared
with LOWEST, which holds the current lowest byte.

If the next byte is greater than or equal to C, SCN020 bumps the X pointer to
the next location and the count in B is decremented, causing a loop back to

SCNO10.

If the next byte is less than the current, it replaces the contents of LOWEST.
Then, the PULS Y pops the stack and puts the current location into Y. This is
done only to reset the stack, to get rid of the current location. Next, the PSHS
X pushes the current location into the stack.

After the loop is over (the count in B goes to 0), the stack holds the location of
that lowest value.

Note that when we say, “the stack holds. . .)" what we really are saying is that
“the stack currently holds a 16-bit data value; no corresponding PULS has
been issued for it The stack might hold three or four different 16-bit values
at this point, depending upon the program. Just remember that when the
stack is used for temporary storage in this way, we'll have to eventually use
the values, or at least reset the stack pointer by dummy PULSes or other
instructions, which we'll talk about in a later chapter.

Another interesting point: Although we used a PSHS X to save the location
in the stack, there’s no reason at all that we have to PULS that value back into

146

Using the Stack to Hold Temporary Results 1 5

the X register. In fact we're PULSing it into another register, the Y register.
Once 8-bit values are in the stack they can be PULSed by A, B, or DP; once
16-bit values are in the stack, they can be PULSed by X, Y, U, or PC at will.

After the loop, we PULS the location into the X register, as shown in Figure
15-2D. The lowest value in LOWEST is then put into A.

The last instruction is an RTS that PULSes the return address of the calling

program. The “calling program” term means that another program has
called the SCANTY subroutine.

Want to see how SCANTY works? The following program shows how
SCANTY might be “called” as a subroutine:

START LDX #3400 SCREEN LOCATION
LDB #0 1/2 OF SCREEN SIZE
BSR SCANTY CALL SCANTY
LOOP JMP LOOP LOOP HERE

You can assemble this program by inserting it before SCANTY, breakpoint-
ing location LOOP, and executing from location START.

At the end of the execution the X register should point to the lowest value in
the tirst half of the screen area, and the A register should contain the lowest
value itself. (Use the ZBUG R command to look at the registers and first half
of the screen contents; however, be aware that the screen is changing as you
use ZBUG! It’s best to note the position of the lowest value before running
SCANTY and ZBUG.)

Multiple Subroutines

We now have a standard general-purpose subroutine for searching any table
of 256 bytes or less for the lowest value. What can we do with it?

One idea that comes to mind is to use it for a two-buffer sort. Remember ina
previous lesson when we implemented a bubble sort? We mentioned the
two-buffer sort as a sort option. The two-buffer sort requires twice the
storage space because we need an extra buffer. Memory is cheap, however, so
let’'s implement this version of a sort.

To do this, we'll need two more subroutines:

*STORE ENTRY IN A INTO (Y) LOCATION

STORE STA Y+ STORE ENTRY
RTS RETURN
*MARK OLD ENTRY WITH -1
MARK LDA #8FF -1
STA X STORE -1
RTS RETURN

147

1 5 Using the Stack to Hold Temporary Results

The first of these, STORL, stores the contents of A into the location pointed

to by Y.

The second, MARK, marks the location pointed to by X with a -1 (i.e. stores a
-1 value to the location).

Given these three subroutines, we can construct a short program to sort the
256 bytes of data in the first half of the screen into the second half of the

screen:
@DAD 1@8E @500
@DB1 Cé 1}
@DE3 34 @4
PDES BE 2400
PDEB CbH wo
avea 8D ac
@DRC 8D ZD
@DBE 8D ZE
@aDce 35 04
@DCZ 5A
@DC3 26 EE
@DCs 7E @Des
oDCE BSL FF
@nca B7 @DEA
@DCD Ab 84
@DCF 34 1@
PDD1 Ab B84
@anD3 B1 @DEA
@DDé 24 07
aDps B7 @DEA
dDDE. 35 40
@DDD 34 10
PDDF 3D 21
ODE1 SA
@DEZ 26 ED
@DE4 35 10
ODE& R6 DDEA
@DEY 39
BDEA .1}
ODER. A7 AD
@ODED 39
ODEE 86 FF
ODFD A7 84
@DFZ 39

[raLalnlv]
QA0 TOTAL ERRORS
LOOF @Decs
LOWEST ©DEA
MARK ODEE
SCANTY @DC8
SCN@1R ©®DD1
SCNRZ@ @DDF
SORG10 0DR3
SORT @DAD
STORE @DER

148

00100
20110
o010
20130
20140
20150
20160
20170
20180
20190
20=00
00210
20220
20230
POz40
20250
POZ60
00270
o1'z80
00290
20300
00310
20320
20330
20340
20350
20360
20370
20380
20390

V040D

20410
2B420
2430
RBR440
00450
22460
0470
20480
RR450
20500
20510
20520
20530
Q542

* TWO-BUFFER SORT

SORT

SORG10

LOOP

LDY #$400+256 SECOND 1/Z SCREEN
LDB #02 256 BYTE COUNT

PSHS B SAVE COUNT

LDX #4400 POINT TO FIRST HALF
LDE #0 256 BYTES

BSR SCANTY FIND LOWEST ENTRY
BSR STORE STORE IN SECOND HALF
BSR MARK DELETE FIRST RUF ENTRY
PULS B GET COUNT

DECR DECREMENT

BNE S0RO10 LOOP IF NOT DONE

JMP LOQP

2 a R et st s EsEs S sS ETI LIS LTS ST L LS

* SCAN TAPLE FOR SMALLEST ENTRY SUBROUTINE

* ENTRY: (X)=:TABLE

*

* EXIT:

*

(B)=512E OF

(X)=>8MALLEST ENTRY IN TABLE
(A)=5MALLEST ENTRY

TABLE 1-255,0=256

* k Kk Xk X

R SRR s Rt S s eSS TL LTI LTSS LS LS 223

SCANTY

SCN210

5CNOzD

LOWEST
* STORE
STORE

MARK

L.DA BEFF
8TA LOWEST
LDA s X
PSHS X
LDA 3 X
CMPA LOWEST
BHS SCNDZO
STA LOWEST
PULS U
PSHS X
LEAX 1:X
DECE
ENE SCN212
PULS X
LDbA LOWEST
RTS
Fce @
ENTRY IN A INTO
STA s Y+
RTS

* MARK OLD ENTRY WITH -1
LDA #EFF
STA s X
RTS
END

Figure 15-3. Two Buffer Sort

SET UP LOWEST

SET LOWEST

GET FIRST BRYTE

INITIALIZE STACK
GET BYTE
COMPARE WITH LOWEST
GO IF Cx=A
NEW LOWEST
PREVIOUS PNTR
SAVE THIS LOC'N
POINT TO NEXT BYTE
DECREMENT COUNT
GO IF NOT END

GET POINTER

LOWEST IN A

RETURN

HOLDS LOWEST AT END

(Y) LOCATION

STORE ENTRY

RETURN

-1

STORE -1
RETURN

Using the Stack to Hold Temporary Results 1 5

This sequence uses the three subroutines to do the sort. The first, SCANTY,
finds the location and value of the lowest entry in the first screen half buffer.

The second, STORE, stores the value in A into the second screen half buffer
by using Y as a pointer.

The third, MARK, sets the original location of the current value in the first
screen half buffer to -1. A value of -1 is used as a flag to say "this location
already was a lower value and is not be used from this point”

Before the BSR to SCANTY, X and B must be initialized to point to the first
screen half buffer and for a count of 256, respectively.

About the only “tricky” part of SORT is using a PSHS B to save the count
before the BSR to SCAN is made. If this were not done, the loop count in B
would be destroyed by the table size parameter. After the three subroutines,
the count in B is restored by a PULS B. This type of operation is very common
in saving registers.

If you run SORT, you will see the second half of the screen fill up with ordered
characters, and the first half of the screen fill up with -1 characters, which
display as an orange rectangle in the character position. By the way, this
SORT also works with OFFH values (-1). Do you see why?

Hints and Kinks 15-4
Screen Graphics

The -1 character output to the text screen defaults to “semigraphic
4" mode, where there are 4 "elements” per character position and
from 1 to 8 colors. The format is ICCCEEEE, where I marks the byte
as graphics, CCC is a color code from 000 through 111 and EEEE is
the on/off status of the four elements. A -1 (11111111) sets orange
(111) and turns on all elements (1111). See "Color Computer Gra-
phics” for more on this.

We'll be using PSHSes and PULSes frequently from this point on. In fact,
we've just scratched the surface of the use of stacks in the 6809 and Color
Computer!

Hints and Kinks 15-5
To Examine the Condition Codes

The colon key lets you convert to “Condition Code Format." If you
have an 8-bit value that represents Condition Codes (as in the stack
froma PSHS CC) and you are examining the location containing the
CC value, do a colon after the display to convert to the CC
mnemonics:

#3000/ 05 :=ZC

149

1 S Using the Stack to Hold Temporary Results

Review
To review what we've learned here:

® Interrupts use the stack by pushing the return address for the interrupt
point in the stack

¢ PSHSes and PULSes are used to temporarily store data in the stack

® Any combination of registers — CC, A, B, X, Y, U, or S can be PSHSed or
PULSed

e There must be a PULS executed for every PSHS exccuted, or the stack
must be reset by "dummy” PULSes or other instructions that adjust the S
register

® Subroutines are often small segments of “generalized” code that work for
many different sets of conditions

e Parameters are often passed to and from subroutines; these parameters
are "arguments” that define the conditions for the subroutine

® Once datais in the stack, it is not related to any register; the same register
or a different register may be used to retrieve the data or the data may be
simply discarded

For Further Study

RTI, RTS action (Appendix 1)
PSHS, PULS formats (Appendix II)

150

KEY CHART — CHAPTER 16

INSTRUCTIONS

EDTASM+ EDITOR COMMANDS

1BHS CtRB—1tPS— ROL ASSEMBLE; HNSERF AHEPEACE
F BHA —CtR- -tDt- RORA -G(oR¥— +OADH
B BHFB— -OMPA +DX— RORB B(ELEFES MOVES HERHEYS
B EMPB- tBY¥- ROR O NUMBERT— WRITE)
B tBEE- -EMPD~ AFAS -RFF FHINDY PRINFI— ZBUGS-
B BrO- OMPS- tEAU AFS— HARDCOPYS OrutT
- —BLO -CMPU- +EAX SBEA-
¥ BtS -EMPX- tEA¥ -SBEB EDTASM+ ASSEMBLER COMMANDS (A)
¢ tBtS OMPY- LSLA SEX JAO ABSOLUTE ORIGIN /NO NO OBJECT
o Bt COMA- LSLB SFA- _4p o\ MEMORY-ASSEMBEY NS NO-SYMBOL—TFABLE
} tBtF COMB—LSL SFB— L p e PRINFER— /SS SHORT SCREEN
Bmi— €6M- LSRA SFD- o MANUAL ORIGIN W E— WA ON-ERRORS—
B BNF~ ‘DAA LSR SF—
+BNE— DECA— MUL SFX—
L BP— DEEB- NEGA -SFr- EDTASM+ ZBUG COMMANDS
6~ +BP— -DEG NEGB SUYBA- ArSCHIDISPLAY ~FDOISPLAY BLOECK—
. BRA- EFORA- NEG -SUBB- FHHARDEOPY-BLOCK—
& +BRA- fORAB ~NoP -5yBp— C(ONTINUE) —H-MOVEBLOEK
r BRN- EXG- -ORA SWiI “BSPLAY— YV ERIFY) BLOCK-
+BRN- NGA -ORB— SWI2 EfBHFOR)— W(ORD) MODE
f BSR- NEB —OREE SWI3 66} H—BREAKPONT—
- tBSR e -PSHS- SYNC H(ALF) SYMBOLIC HANK—BREAKROHNT-
L BYe- P PSHU -FFR- ~HNPUT)IBASE— +—EXAMHNE—RRECEDING-
¥ BYEe- 4SA— PHS FSTFA HOARD)-MEFHE— +—EXAMHNENEXT—
- -B¥S— iBA- PULU -FS¥8- M(NEMONIC) MODE — BRANCH INDIRECT
— +BYS Fu.Y-% ROLA FSF N(UMERIC) MODE ; FORCE NUMERIC
- €tRA- tBH— ROLB -OrOUTFPUF-BASE —FORCENUMERICBYFF—
—P-SAVE-IH—ON—TFAPE— —FORCEFIAGS-
REEGISFERFDISPLAY— F—EXAHNE-
ADDRESSING MODES
— SHNGLE-STFEP
ERENT S(YMBOLIC DISPLAY) :
feF—
ENDED- GENERAL TOPICS
EBHATE -CPH REGISTERS — SHBROUTINES —-
PLEHNDEXED -BATA-FO-REGISFERS— STACK-OPERATIONS
ATIE LOADING-AND-STORING- ROTATES, SHIFTS
U ACEMENTANDEXED- —ADPITIONAND-SUBTRACFION MULTIPLES
OINCREMENTDECREMENT CONDITHON-COBES— DIVIDES
RECT SYMBOHC-ADDRESSING- DECIMAL ARITHMETIC
HISTICATED JUMRS, BRANGHES— BASIC INTERFACING
RELAFHE-BRANCHES— PASSING PARAMETERS
—INCREMENTFSIDFCREMENTS— VARPTR USE
; PSEUDO OPS ORG -COMPLEMENTFS— ROM SUBROUTINES
+OGHCAL—OPERATIONS— OTHER ADDRESSING
4 RMB MHETFHPLEPRECISHON— GRAPHICS
> SET PATA VAL UES — SOUND
SEFDA-
- INDEXING LARGER PROGRAMS
HNDEXHNG—WHFH—X Y~
SORFHNG—

Type = Present Chapter
lar Type = Future Chapters
Jype = Past Chapters

151

152

Chapter 16
Rotates, Shifts, and Multiplication

In this chapter we'll be looking at a number of related instructions that move
data by “shifting.” In some shift instructions, data is "rotated” back into the
memory byte or cpu register; in other shifts, zeroes fill the vacated positions.
Simple multiplies can be done by shifting. We'll also look at the powerful
MUL instruction which is a built-in "hardware™ multiply.

Rotates

There are two rotate instructions, ROL and ROR. Like the logical instruc-
tions, the rotates work on either the A or B accumulators or a byte in a
memory location.

The instructions rotate the register or memory location either to the right or
left one bit at a time, as shown in Figure 16-1. However, the C Condition Code
is also rotated along with the Carry, making the rotate a 9-bit rotate.

-~ ROL
ROTATE

LEFT
. ROR
ROTATE
RIGHT
*‘NOTE: 9-BIT

ROTATE THROUGH
CARRY CONDITION CODE!

Figure 16-1. Rotate Instructions

To see how these work look at the following program:

@210 * ROLs ROR OPERATION

2953 B&4 AS @211@ ROTDEM LDA #$A5 10100101
8955 Cé6 29 PO120 L DR #9 7 TIMES
@957 49 03130 ROTOZ@ ROLA ROTATE
958 S5A 22140 DECRE DECREMENT COUNT
@959 26 FC 02150 BNE ROTO2D GO IF NOT END
B95E. Bé A5 0o160 LDA H#HE$AS 10100121
@95D Cé6 Q9 o170 L.DB #9 9 TIMES
Q95F 46 22188 ROT@38 RORA ROTATE
@968 5A 20190 DECB DECREMENT COUNT
0961 26 FC 0200 BNE ROTO30 GO IF NOT END
@963 7E 2963 Q0210 LOOP JMP LOOP LOOP HERE

Po0d [" et} END

22008 TOTAL ERRORS
LOOP 2963
ROTBZ@ 0957

ROTB3@ 895F
ROTDEM @953

Figure 16-2. ROL, ROR Operation Program
153

16 Rotates, Shifts, and Multiplication

Assemble the program. Now go to ZBUG and breakpoint at location
ROT020,ROT030, and LOOP. Execute from ROTDEM. When you reach the
breakpoint, do an R and look at the contents of A. Now do a ZBUG C to
continue from the breakpointed location. You'll hit the breakpoint again, and
you can look at the contents of A again. Continue until you hit the breakpoint
at ROTO030. Continue (C) from that point. What you'll see is the rotate action
of ROLA and RORA. It'll look like this:

A Contents(Hex) A Contents (Binary) Carry

ROT020: AS 10100101 X
0100101X 1

100101X1 0

00101X10 1

0101X101 0

101X1010 0

01X10100 1

1X101001 0

X1010010 1

AS 10100101 X

ROT030: A5 10100101 X
X1010010 1

1X101001 0

01X10100 1

101X1010 0

0101X101 0

00101X10 1

100101X1 0

0100101X 1

AS 10100101 X

In the first part, the A register is rotated left, one bit at a time. As each bit is
shifted around from bit 7 back into A through bit 0, you should also see the bit
going into the Carry Condition Code. Nine shifts are done and at the end of
the time, the A register should have the original value of $A5, 10100101.

The ROT030 loop will rotate the A register to the right, one bit at a time. As
each bit is shifted around from bit 0 back into A through bit 7, you'll also see
the bit going into the Carry Condition Code. Nine shifts are done. At the end
of the shifts, A will have the original value.

The N and Z Condition Codes are also affected for these two rotates. The Z
Condition Code is set if the shifting results in a zero. (If the number is

154

Rotates, Shifts, and Multiplication 16

non-zero, Z will never be set.) The N Condition Code is set to the sign of the
shifted result.

Hints and Kinks 16-1
Rotates

Rotates are useful for testing bits in a cpu register or memory byte
through 9 iterations without destroying the original value.

There are several other types of shifts in the 6809 that are used frequently.
One of these is the "logical” shift, and the second is the "arithmetic” shift.

Logical Shifts

Logical shifts are different from rotates because they do not recirculate the
data in the register or memory location. Logical shifts shift in zeroes in place
of the data from the other end of the register or memory locatton as shown in

Figure 16-3.

REGISTER OR
MEMORY LOCATION
7’]
LSL
SHIFT LEFT
! o LSR
o—] LOGICAL SHIFT
RIGHT

Figure 16-3. Logical Shifting

The two logical shifts in the 6809 are the LSR (Logical Shift Right) and LSL
(Logical Shift Left).

As in the case of the rotates, any bit leaving the register or memory location
as a result of the shift goes into the Carry Condition Code. All Condition
Codes with the exception of the "Half Carry” Condition Code are set on the
result of the shift. (The "Half Carry,” H, is the Carry out of bit4 and is used for
certain “binary-coded-decimal” operations.)
If we had 01110001 in the B register, then a

LSRB SHIFT B RIGHT

would result in a2 00111000 with the Carry Condition Code set to 1. Seven
LSRBs would result in 00000000, clearing the B register.

The LSL instruction works exactly the same way in reverse. If we had
01110001 in B, then

LSLB SHIFT B LEFT
155

1 6 Rotates, Shifts, and Multiplication

would result in 11100010, with the Carry Condition Code set to 0.

LSR and LSL can be used with the A and B registers and with any byte in
memory.

LSL $3000

for example, shifts the contents of RAM location $3000 left one bit logically.

Multiplying and Dividing By Shifting

Every time a logical shifc left is done, the original value in the register or
memory is multiplied by 2:

00110010 Original=50

<= 01100100 After LSL=100
<= 11001000 After L.SL=200 (absolute)
<= 10010000 After LSI.=144 (invalid)

Every time a logical shift right is done, the original value is divided by 2:

00110010 Original=50
== 00011001 After LSR=25
=> 00001100 After LSR=12
=> 00000110 After LSR=06
=> 00000011 After L.SR=3
You can see from the above examples that there is a limit to the number of

multiplies by shifting that can be done. This limit is the size of the register or
memory location itself. After a certain point, the results are invalid.

Another interesting point is that a divide by shifting to the right results in a
loss of the remainder. Actually, a divide by shifting puts the remainder (0 or
1) into the Carry Condition Code, but it is lost on the next shift.

Multiplying and dividing by shifting, then, can be done for small values and
with an eye on the limitations of this type of processing.

Multiplication by powers of two can also be done by adding either 8-bit values
or 10-bit values to themselves.

Hardware Multiplies

What about multiplication or division by other than powers of two? Suppose
we wanted to multiply any 8-bit number by any other 8-bit number? There is
a built-in “hardware” multiply in the 6809. However, there is no built-in
divide! Lack of a divide is not an unusual situation for microcomputers, by the
way. Most other microprocessors, such as the 8080, Z-80, 6502, and 6800
(predecessor of the 6809) not only don’t have a hardware divide, they also do
not have a hardware multiply!

156

Rotates, Shifts, and Multiplication 1 6

The Multiply instruction in the 6809 is called "MUL” and multiplies
the contents of the A register by the contents of the B register. The result
goes into the D register (A contains the "most significant” 8 bits, while B
contains the “"least significant” 8 bits). The process is shown in Figure 16-4.

BACK INTO D REGISTER
AS 16 BITS
A B
r 8 BITS] 8 BITS]
u
v AN _/
A B
“ J
Y
RESULT

Figure 16-4. MUL Action

Suppose we want to use the MUL to multiply the following numbers:

1) $50 times $02 (80 * 2)
2) $0A times $14 (10 * 20)
3) $00 times $00 (0 % 0)
4) $7F times $02 (127 * 2)
5) $80 times $02 (128 * 2)
6) $FF times $FF (255 * 255)
You can easily do this by assembling the short program
START MUL
LOOP JMP LOOP

breakpointing at LOOP, and using the R command to examine the contents
of the D register. Use the A/ and B/ commands in ZBUG to load the registers
before the Multiply.

Did you try them? Let’s do some analysis about the multiply. We're multiply-
ing an 8-bit number by an 8-bit number. How large will the result be? That’s
fairly easy to figure out.

We know that in 8 bits we can hold 0 through 255 if the numbers are
“unsigned” or absolute. The result of the multiply can therefore be anything
from 0 (0 * 0) through 65,025 (255 * 255).

Since a 16-bit number can hold 0 through 65,535, it looks as if we should have
no trouble fitting the quotient in the 16-bit HL. register pair. Here is what you
should have seen after the multiplies:

157

16 Rotates, Shifts, and Multiplication

1) $50 times $02=800A0 (80 * 2)=160

2) $0A times $14=800C8 (10 * 20)=200

3) $00 times $00=$0000 (0 * 0)=0

4) $7F times $02=800FE (127 * 2)=254

5) $80 times $02=80100 (128 * 2)=256

6) 8FF times $FF=$§FEO1 (255 * 255)=65,025

The MUL instruction is an "unsigned” multiply. Multiplying $FF by $FF in a
“signed” or two's complement mulciply would have resulted in +1, or
0000000000000001 ($01), but here the product was $FEOI, or 65,025,

What about multiplies of more than 8 bits by 8 bits? After all, there’s not a
great deal of "significance” in an 8 bit value.

Hints and Kinks 16-2
How Fast is MUL?

The MUL executes in about 12.5 microseconds (millionths of a
second), about 10 times faster than the equivalent “software”
multiply!

A 16 by 8 Multiply

Here's a method for a 16 by 8 multiply. Let's say that one operand is in
location OPA and OPB (2 bytes) and the other operand is in location OPC.
We want to put the product in RESMSB, RESNSB, and RESLSB (3 bytes).
We'll use the MUL instruction to do the multiply. How can this be done with
an 8 by 8 multiply?

One way todo it is to use the fact that any [6-bit number of the form $XXYY
is really XX*256+YY. If we call the two bytes of the first number AB and the
byte of the second number C, then we have (A*256+B)*C. This is equal to
A*C%256 + C*B, which is the same as

AxCx256=A*C shifted left 8 bits
+C*B

All we have to do is 2 separate multiplies of A#*C and CxB, do some shifting
and addition and we’ll have the result:

158

Rotates, Shifts, and Multiplication 1 6

20120 * 16 BY 8 MULTIPLY BY PARTIAL PRODUCTS

PABZ B6 BAESL 2011@ MUL1S L.DA OPC GET C
BAB5 7F BAE1 o111 CLR RESMSR CLEAR RESULT AREA
BAB8B 7F BAEZ 20112 CLR RESNSE CLEAR SOME MORE
PABE 7F BAE3 20113 CLR RESLSE CLEAR THE LAST
BABE F6& BAE4 00129 L.De OPA GET A
@AC1 3D 22130 MUL AxC
RACZ FD RAEL V@140 STD RESMSE SAVE
BACS Bé6 BAES 20150 LDA OoPE GET B
BACB Fo& BAESL 00160 L.DE OPC GET C
BACE. 3D 22170 MUL CxR
BACC F3 QAEZ 20180 ADDD RESNSE LS BYTE
BACF 34 21 22190 PSHS CcC SAVE CARRY
@AD1 FD QAEZ oRzoa STh RESNSE CxB
BAD4 P66 BAE1 oz1@ LDA RESMSE. GET MS BRYTE
BAD7 35 a1 2022 PULS cC GET CC
BAD? BY 20 20230 ADCA #0 ADD IN CARRY
@ADE B7 QAE1 a0z40 STA RESMSE STORE RESULT
BADE 7E BADE Q0241 LOOP JMP LOOP LOOP HERE AT END
BAEL (1] Q0250 RESMSE. FCR "] RESULLT MS BYTE
BAEZ 0] D260 RESNSE FCR 7] RESULT NEXT SIG BRYTE
PAEZ "2%] QD=7@ RESLSE FCR o RESULT LS BYTE
PAE4 0] 208D OPA FCB % MG OF MULTIPLICAND
BAES) 20290 ore FCB "] LS OF MULTIPLICAND
OAES ("} @300 OFC FCR "] MULTIPLIER

ralln] 00310 END

20000 TOTAL ERRORS

LOOP @ADE
MUL 16 BAR.Z

OPA BAE4
OPE RAES
OoPC QAES

RESLSE BOAE3
RESMSE QAEL
RESNSE OAEZ

Figure 16-5. Sixteen by Eight Multiply Program

This code will generate a result as a 3-byte number in RESMSB through
RESLSB. The most significant byte of the result will be in location RESMSB,
the next in RESNSB, and the Jast in RESLSB. The 16-bit multiplicand must
be in OPA, OPB and the 8-bit multiplier in OPC.

This technique can be used for 16 by 16 multiplies or even greater, but does
get fairly tedious for a larger number of bytes. Floating-point representation
is generally used for large numbers, as in BASIC single-precision and double-
precision variables.

Arithmetic Shifts

We've gotten off on a tangent here discussing multiplies, but we really
couldn’t do them justice before discussing shifts.

We mentioned another type of shift at the beginning of this lesson called the
“arithmetic shift’” To see how this shift works, enter the following code and
assemble:

159

1 6 Rotates, Shifts, and Multiplication

*ARITHMETIC SHIFTS
ASHFT LDA #$85 LOAD A WITH 10000101

LDB #8 LOOP COUNT
ASHO10 ASRA SHIFT A RIGHT, ARITH
DECB DECREMENT COUNT

BNE ASHO010 GO IF NOT 8
LOOP JMP LOOP LOOP HERE
END END

If you assemble and execute using ZBUG to examine the B register, you
should have seen the B register change as follows:

10000101
11000010
11100001
11110000
11111000
11111100
11111110
1111111t

11111111

Now change the 85H to 75H and execute. You should see:
01110101
00111010
00011101
00001110
00000111
00000011
00000001
00000000

Itappears that in the first case the shift “"extends” ones, while in the next case
zeroes are “extended”” Why?

The arithmetic shift is used for signed values. When the most significant bit
is a sign (or even if it isn’t), the ASR will extend the msb to the right as the
number is shifted. For positive numbers (sign bit=0), this works the same as

160

Rotates, Shifts, and Multiplication 16

an LSR, extending zeroes. For negative numbers, though, the result is
different.

Looking back on the shift of 85H, let’s take the two’s complement of the
result and see what we get:

10000101 -123
11000010 -62
11100001 -31
11110000 -16
11111000 -8
11111100 -4
11111110 -2
11111111 -1

Aha! Looks like the ASR can be used to “sign extend” the result. "Sign
extend” means that the result will be shifted right with the sign intact. If we
used just an LSR shift, we'd have an invalid result as in

10000101 -123
01000010 +66

Again, as in the case of an LSR, we lose a portion of the result on the shift if
the number is odd — the -123 became a -62, for example. The ASR is handy,
though, for those cases where we want to shift a negative number and do it
with the sign properly adjusted.

There’s another arithmetic shift, the arithmetic shift left, or ASL. In fact, this
is identical to an LSL, as it has the same operation code. Assemble this code to
compare the “opcodes” for both shifts:

ASLA

ASLB

ASL $3000
LSLA

LSLB

LSL $3000

Hints and Kinks 16-3

The SEX Instruction
Any company that labels their listings "AUSTIN TEXAS —
MICROCOMPUTER CAPITAL OF THE WORLD"” surely has the

chutzpah to call a Sign Extend instruction SEX, rather than the
timid SGN, SIX, or SED. And they did!

161

1

6 Rotates, Shifts, and Multiplication

Actually, it's a rather bland instruction; it sign extends the sign bit of
the B register into A. It's handy for setting up an ADDD and other
operations. If A was 00000000 and B was 10010000, for example, the
result wouldbe 11111111 in A and 10010000 in B; the same number,
but in 16 bits. We thought we'd mention it here because of the
related ASR function.

162

Hints and Kinks 16-4
More on Examination and Display Modes

There are a number of ZBUG commands we haven’t covered relat-
ing to the "examination” mode and "display” mode of ZBUG.

You've used the B(yte) command to enable the examination of a
single byte at a time and A(SCII) to enable examination in ASCIL

W (ord) enables the examination of two bytes at a time.

#W
#2800/ 0852

The "default” (entry) examination mode is M(nemonic) which
results in examination in instruction mnemonic form. If ZBUG
cannot find an instruction to match the data in memory, question
marks are displayed.

#M
#3000/ STA >3010

All of the above are “examination” mode commands that are mutu-
ally exclusive; only one is in force at any time.

The display mode commands are another set of functions from the
examination mode commands; they determine how the location
values will be displayed.

If N(umeric) mode is set, all locations will be displayed in numeric
form:

#N
#3000, B7

If S(ymbolic) mode is set, all locations will be displayed as symbolic
expressions based upon the in-memory assembly, if any.

#S
#START+7/ STA >TABLE
START+10/ LDA #20

If H(alf Symbolic) mode is set, the memory address operand is
displayed in numeric, but the examination location is in full symbolic
form.

Rotates, Shifts, and Multiplication 16

#H
#START+7/ STA >3010

These modes do not affect the input format; you can still "open” a
location in symbolic form even in numeric mode:

#N
#START+11/ BRAAB >3010

(The BRAAB instruction above, by the way, stands for the seldom
used “"Branch and Bomb.")

The "one-time” semicolon key forces a numeric display mode as in:

#S
#START+7/ STA >TABLE ;STA >3000

Review

To recap this chapter:

Rotates rotate either the A register or B register or a memory location.

Rotates recirculate the bits back into the register or memory location from
the other end

The Carry Condition Code is affected by the rotate along with the Zand N
Condition Codes

The Carry Condition Code is always set to the state of the bit shifted out on
a rotate

The LSR and LSL are “logical” shifts that shift a register or memory
location to the right or left one bit at a time

Logical shifts affect the N, Z, V, and C Condition Codes
Logical shifts to the right divide by 2 and to the left multiply by 2

The MUL instruction performs an "8 by 8" multiply of A and B, with the
16-bit product going into the D register

The product of binary multiplies will not exceed the total number of bits in
both operands

The ASR arithmetic shift sign extends the A or B register or memory
location contents as the shift is done

For Further Study

163

INSTRUCT

ADCA- BHFA— -CLR +BY -RORA CroPY— AR HHARBEOP Y
ADEHB —BHB- OMPA +DX- AORB DIELEFEF —MHOVE) HERH
ADBA- B -CMPB- +B¥- ROR B MOMBERF WHRHFES
ADDB ABLE- GMPD AEAS -REL —FHNB PN —ZBHGH
ADBD- BLEO- OMPS- +EAY —RFS HARDGORY -OMHFF
ANDA— +BEO- EMPU— +EAX -SBCA-
ANDB— BES— EMPX LA —5BEH EDTASM+ ASSEMBLER COMMANDS (A)
ANDCE-1BE5 GMPY- £SEA- SEX /AO ABSOLUTE ORIGIN /NO NO OBJECT
-AStA— BEF -COMA +5t8 —S5FA
ASER- LB COMB +5& -5FB— 0 1 MEMORY ASSEMBL) NS—NO-SYMBOL TADL
HPAHHE—PRHNTFER /SS SHORT SCREEN
ASE BMl- 6OM- £SRA SFB 5 \MANUAL ORIGIN AT ON—FRAORS
ASAA- +BMF CWAI +5AB- =S¥ N NO LISTING 7
ASRB BNE DAA 1SR~ SFH-
ASR- +BNE- -BECA MUE SPr—
BCE- -BP— BEEB NEGA -SF¥ EDTASM+ ZBUG COMMANDS
+BEE- +BP- DEO- NEGB Suga ATSCHDISPLAY FOIRPIAYBL OEK
-BGS- -BRA— -EORA NEG- -8HBB— BIYFEMODE FHHARBEOPYBEON
+BES +BRA FORB NOEP StBp— CrONFNUES H-MOVEBEOCHK—
BEG- BRN- FXG& ORA SWI DHSPEAYG YTERIFYBLOCHK
+BFO— —£BRN +NGA ORBS- Swi2 ErDIFORY WIORD T MODE-
BOE BSA- WEB BREE- SwWI3 ST H—BREAKPOINT-
+BEE- +HB5R NE PSHS- SYNC THALF-SYMBOLE FAANKI—BAREAKPOINT
-BEF— BYe- FhH— PSHU —FFR— NP TFBASE +—FEXAMINERREGEDIN
+BGF +BYE ISA— PHS FSFA— LIOADIMEFHE A EXAMINENEXTF—
BH BYS +BA— PULU FSFR— THNEMONIECT MOBE— — BRANCH INDIRECT
—+BHH— —+B¥S “+H5- AOLA— FSF— NUMERICHMODE —FOREENEIMERIS
BHS- G 4B ROLB —OtOUFPHFBASE —FORCENIMERICHY
P SAVEH—ON—FAPE— ——FOREE—HARS—
RUEGISTER-DISRLAY- A AMNE—
ADDRESSING MODES S BOHHEPISPLAYS — OGS FEP—
—BIRFETF—
—EXFENDES GENERAL TOPICS
A EDATFE— ~CPHREGISFERS —SUBROUFINES—
~SHHPLE—INDEXFE— AT O REAISTRRS— STACKOPERAFIONS-
—RELATHE— T OADIGAND S FORNE— —ROFAFES—SHHFS
BISPLACEMENTFNBEXED ADDIHONAND—SHBFRACHON- MOFHALES—
AHFOINCREMENTOECREMENT —CONDITIONCODES- DIVIDES
INDIRECT —SYMBOLHE APDRESSING- DECIMAL ARITHMETIC
SOPHISTICATED —HHAPS—BRANCHES BASIC INTERFACING
RELATFH—BRANCHES— PASSING PARAMETERS
+NCREMENTFS/DECREMENFS- VARPTR USE
PSEUDO OPS -COMPLEMENTS ROM SUBROUTINES
EQU ORG AL OGHICA—OPERATFIONS— OTHER ADDRESSING
F68 RMB MULTHRLE PRECHSHON— GRAPHICS
Fe6— SET —DATAVALUES- SOUND
~+58-- SEHBR- NDEXNG— LARGER PROGRAMS
ANDEX NG T H— XY~
SORTING—

Bold Type - Present Chapter
Regular Type = Future Chapters
Kalic-Type — Past Chapters

164

KEY CHART — CHAPTER 17

IONS EDTASM+ EDITOR COMMANDS

Chapter 17
An Unsigned Divide and
Signed Multiplies and Divides

Unfortunately, the 6809 has no built-in divide as it has a multiply. This is not
an oversight. It takes a good deal of hardware “logic” to implement a divide.
In this chapter we'll see how an "unsigned” divide of 16 bits by 8 bits can be
implemented in software. We'll also look at the question of "signed” divides
and multiplies and find out how to implement them.

An Unsigned Divide

Look at the following code:

PDAIDD ¥R REXR R I FREEE R IR FEFFFRFEEERAFFRREF I F R AR P XE DRI DD ED D ¥

BV11Y *» DIVIDE 16 BY 8 SURROUTINE. UNSTOGNED ¥
A1 * ENTRY: (X)=16-BI7T DIVIDEND »
BA130 * (A)=8-R1T DIVIHOR *
An14@ * EXIT: X =0UO0T TENT ¥
DA150 * (A)=REMAINDER *
DDI1LD XA REEEEEER R UK EFEFRF R AR IR R R AR RR B R RRRRF AN FAFFFHNY

acg3 34 1z Q0178 DIVI6EB PSHS X9 A DIVIDENDs DIVISOR

ac8sH 4F 00180 CLRA CLEAR 1/ OF DIVIDEND

nCcBs6 EL 61 LDe 1585 GET MSE OF DIVIDEND

oces 8D oe BOR DIVIDE DO 8 DIVIDES

acsa E7 &1 STR +155 REPLACE 18T 1/%

2c8sC EH =¥ LDE +2s 6 GET L5B OF DIVIDEND

ACBE 8D @5 BSR DIVIDE DO 8 DIVIDES

@iea E7 2 ST +23 5 REPLACE ZND 1/.

@acoz 35 14 PUL.S B X DISCARD DIVISHORs GET @

@C4 39 P0:6@ ENDEX RTS RETURN

@C?5 BE [ralvajlS} @827@ DIVIDE LDX #8 SETUF COUNTER

uCY8 S8 2@zs@ DIVRLIR LSLE SHIFT D LEFT ONE R1T7

QAC?9 49 [ralvi et ROLA

PC?A CA 21 20300 ORE #1 PRESET @ BRIT TO 1

ACIC 24 04 20301 BCc DIV@13 GO IF C=0

ACIE AD (=9 B30z suea +21 S SUBTRACT MUST GO

AcAD 20 a8 20333 BRA DIVOZ@ CONT INUE

BCAZ AL (=94 Q@310 DIVO1S SUBRA +2s G DO SUBTRACT

BCAL4 24 D4 Q0320 BHS DIV@:0 GO IF + OR @

ACASL C4 FE BD3302 ANDE #$FE RESET @ BIT

acA8 AR (=9 20340 ADDA +23 8 RESTORE

BCAA 30 iF 20350 DIVOZD LEAX =13 X DECREMENT COUNT

ACAC 26 EA 20360 BNE DIVR1D GO IF NOT @

ACAE 39 bR370 RTS RETURN TO CALLING PROG

[ra] """} 20380 END

20002 TOTAL ERRORS

DIV@1@ @ac9o8
DIV@e15 0@CAZ
DIVOz® 0QCAA
DIVies 8C83
DIVIDE 0C95
ENDEX @BC4s

Figure 17-1. Divide 16 By B Program

DIV 168 divides a 16-bit number by an 8-bit number. This is an unsigned di-
vide just as the MUL instruction performs an unsigned multiply. Some typi-
cal values might be these:

165

17 An Unsigned Divide and Signed Multiples and Divides

$FFFF/$01=8FFFF 800 65,535/1=65,535 remainder 0
$F000/$20=$0780 $00 61440/32=1920 remainder 0
$03E8/875=$0008 $40 1000/117=8 remainder 64
$0003/$30=$0000 $03 3/48=0 remainder 3

How does the DIVIDE work? The general method used in divides is “restor-
ing division”

A paper and pencil division is shown in Figure 17-2. The divisor (the number
that goes "into” the dividend) is tried with the first digit of the dividend. If
this doesn’t “go,’ the next two digits of the dividend are tried. If this doesn’t
work, the next three digits of the dividend are tried.

43| 23915-?

0000001000101100- QUOTIENT OF 556
00101011 | 0101110101101011
-0101011
00000111011
-00101011
0001000001
-00101011

000101100
-00101011

0000000111-REMAINDER OF 7

Figure 17-2. Paper and Pencil Division

If the divisor does “go, it is subtracted from the dividend. The next digit is
then brought down with the result, and the process is repeated.

What we are doing in out heads is to make the determination that the divisor
will “go” into the next dividend “residue!’ In some cases we actually try a
quotient digit and find that the result is too large to be subtracted from the
residue; it would give a negative number. In these cases we “restore” the
original residue and try again.

When implemented in a software divide, the program always subtracts the
divisor from the residue, as shown in Figure 17-3. If the result of the
subtraction is negative, the subtraction won't "go.” In this case the residue is
“restored” by adding back the divisor, and the quotient (result) bit is set to 0.
If the subtraction does go, the quotient bit is set to 1, and no “restore” is done.

166

An Unsigned Divide and Signed Multiples and Divides 1 7

INITIAL REGISTER SETUP (23915/43)

CLEARED IN STACK (+2.5)

A TO® B A

— r)
[o 0 0 00 00 0fo 101 11 0 1]fo1 10101 1]
[o o 1 01 0 1 1] FIRST 8 BITS

OF 23915
IN STACK
FIRST Q

BIT SETTO 1

AFTER FIRST SHIFT MAY BE RESET

[0 0000 000fl1 0111 031 1Jlo1 101 01 1]

—l00101011]

AFTER FIRST SUBTRACT

INDICATES NEGATIVE RESULT-RESTORE MUST BE DONE
C /

[110101o1[1o111o1j[o11o1o11]

[00101011]

AFTER RESTORE "RESIDUE"” RESTORED

[o 0 0 0o 0o 0o 0f1 01 1 10 10f[o1 10101 1]

{o 0 101 01 1] QBIT RESET

Figure 17-3. Software Divide Algorithm

The DIV168 program shown above uses the D register to hold the dividend,
as shown in Figure 17-3. The divisor is subtracted from the dividend for 16
“iterations” of the divide. After the first iteration, the dividend becomes the

“residue;’ not really the dividend any longer but a portion of it. The divisor is
held in the stack.

The residue in D is shifted left 1 bit for each of the 16 iterations.

There will be a maximum of 16 bits in the quotient, as in $FFFF divided by 1.
Therefore there will be 16 subtracts, each one generating a quotient bit of 0
or 1.

The quotient bit goes into the least significant bit of the D register (least
significant bit of B). [t is set to a | before the subtract, and reset if the subtract
doesn’t go. The quotient bit can be put into this bit because the D register
leaves a vacated bit as it is shifted left.

167

1 7 An Unsigned Divide and Signed Multiples and Divides

There are two parts to DIV168, the DIVIDE subroutine, and the “main” code
from DIV168 to ENDEX.

The DIVIDE subroutine does 8 subtracts. The X register is used as a loop
counter, and is loaded with an initial count of 8. Next, the D register is shifted
left one bit by doing a logical left shift of B (0 into the right, most significant
bit out to Carry) followed by a Rotate left shift of A (Carry from B goes into
least significant bit and most significant bit of A goes into the Carry.) At the
same time, the Q bit in the least significant bit of B is set to 1; this 1 may be
changed to a 0 later if the divide "doesn’t go”

First a check is made of the Carry. If the Carry is a 1, the high order bit of the
dividend is a 1, and the subtract "must go." In this case, the subtract is done to
adjust the dividend and a BRA DIV020 is done.

Now the subtract of the divisor from the residue is done by SUBA +2.S. The
stack pointer S at this time points to 2 more than the divisor since the BSR
resulted in storing the return address. A "+2,S” picks up the divisor, which
was stored in the stack by the initial PSHS X A.

If the subtract “"goes;” the result in A is either 0 or a positive residue, and the
BHS branches to DIV020. If the subtract doesn’t go, the Q bit in B is reset to 0
by the ANDB #$FE, and a restore of the original value in A is done by adding
back the divisor.

We're now at DIV020. The count in X is decremented by one. If this is not 0,
there are more of the 8 iterations to perform, and a branch to DIV010 is done,
otherwise a return is made back to the main code in DIVI168.

The main code in DIV168 calls DIVIDE in two steps, the first to find the 8
quotient bits for the divide of the 8 most significant bits of the dividend, and
the second to find the 8 quotient bits for the divide of the 8 least significant
bits of the dividend. Breaking the divide up this way is necessary because we
don’t have enough registers to do 16 iterations at the same time!

For each call to DIVIDE, the 8 bits of the dividend are picked up from the
stack, the DIVIDE is called, and the quotient bits from the DIVIDE are then
stored back into the stack in place of the dividend 8 bits. At the end of the
divide, the PULS discards the divisor and puts the quotient in the X register
(PULS B,X). The last "residue” in A is the remainder.

If you want to enter and execute DIV168, use ZBUG to set X and A to sample
values for the divide and then execute from DIV168 with a breakpoint at
ENDEX. You might also try to breakpoint at DIV020 with a C(ontinue) to
see how the registers change for each of the 16 iterations of DIV168.

DIVIDE is a typical divide in software. It is an "unsigned” divide that does
not work with two’s complement numbers.

There is one case in the DIVIDE which you should be aware of. This is
division by zero. If you divide $FFFF by $01 (65,535/1), you'll get a quotient

168

An Unsigned Divide and Signed Multiples and Divides 1 7

of $FFFF, which is correct. What do you get when you try dividing $FFFF by
$00? Try it and see. What about $03F8 by $00?

Both of these cases and any division by 0 produces $ FFFF, which is incorrect.
Because of this, using a 0 divisor is not allowed in divides, and is not allowed
in most other mathematics operations.

Hints and Kinks 17-1
How Fast Is the Divide?

Actually we used the wrong title here. It should have been "How
Slow is the Divide?”” Software multiplies and divides are not known
for speed compared to their hardware counterparts.

We haven’t accurately timed the DIV168, but we can estimate as
follows: The DIVIDE subroutine has 8 iterations of 9 instructions.
Thats 72 instructions total. It's done twice, and that's 144 instruc-
tions. There are 2 instructions in DIVIDE that are also executed
twice, and that's 148 instructions. The DIV 168 "main line” code has
10 instructions, and that’s 158 instructions.

An average 6809 instruction in the Color Computer executes in
about 4 “cycles” (see Appendix 1I). Each cycle is about 1.124 micro-
seconds, so we have 4*1.124%158=710 microseconds, or about 1400
divides per second, compared to 80,800 multiplies using the hard-
ware MUL instruction! Can DIV168 be speeded up? Yes, and we'll
leave it up to you as an exercise. . .

Dividing by Larger Numbers

The DIV 168 above is about the minimum-sized divide that is still useful. By
proper “'scaling” you can use DIVIDE to get fairly good accuracy. For exam-
ple, if you wanted toadd 1/2 + 1 /4 +1/8, and so forth, you could do the divide
as 10000/2 + 10000/4 + 10000/8. . . The resulting quotient would be “scaled
up” to 10,000 times the actual result, and you could find the true result by
putting a decimal point four places in front of the computed result:

10000,/2= 5000
10000,/4= 2500
10000, 8= 1250
10000/ 16= 625
10000/32= 312
10000/ 64= 156
10000/128= 78

9921 => 9921 actual is 9921875

169

17 An Unsigned Divide and Signed Multiples and Divides

Doing “Signed” Multiplies and Divides

In this chapter and the last we've discussed unsigned multiplies and divides.
How would you do “signed” multiplies and divides?

Although it’s possible to do them directly with special multiplies and divides,
the easiest way is to first convert the operands to absolute values, do the
multiply or divide, and then change back the result to the proper sign. An
example is shown for DIVIDE:

P219@ * SIGNED DIVIDE

@F3E g6 PF6E @011 SDIV LDA DIVDND GET DIVIDEND

OF41 BB OF70 20120 EORA DIVSOR EOR DIVISOR

@OF44 34 21 22130 PSHS cC SAVE RESULT SIGN

OF46 FC OF 6E 20140 LDD DIVDND TEST SIGN OF DIVIDEND

OF49 2ZA D6 00150 BPL SpIO1® GO IF +

@F 4B CC 2000 20162 LDD #0 FIND ABSOLUTE VALUE

QF4E B3 BF&E 02170 SUBD DIVDND NEGATE

@F51 1F a1 20180 SDIGI® TFR DX DIVIDEND NOW IN X

@FS3 R6& OF70 20190 LDA DIVSOR GET DIVISOR

PF546 ZA at 202092 BPL SDIZ® GO IF +

AFS8 40 20210 NEGA FIND ABSOLUTE VALUE

BF5% 8D 16 Q0zz® SDIBZ® BSR DIVi68 DO UNSIGNED DIVIDE

OF58 35 21 PV:z30 PUL.S cC GET RESULT SIGN

@F5D 2ZA aC BO240 BPL. LoopP GO IF ALL OK

@QFS5F 34 12 QVz50 PSHS As X QUOTIENT TO STACK

BF&61 CC 2000 V260 LDD #0 CLEAR D

@F&64 A3 &1 PVz70 SURD +139 NEGATE QUOTIENT

BF 66 1F (%3] 20280 TFR Ds X GUOTIENT BACK TO X

@F&68 35 22 00270 PULS AsY DROP Xs GET A

BF 6A 40 20300 NEGA NEGATE REMAINDER

@F &R 7E OF 68 203102 LOOP JMP LOOP L.OOP HERE

OF 6E 0000 0032® DIVDND FDBE "] DIVIDEND

QF7@]} Q0330 DIVSOR FCR Qa DIVISOR
.l R Y B S EE E EE E R e E RS R S I S RS S T S s
@035@ * DIVIDE 16 RY 8 SURROUTINE, UNSIGNED *
Q362 * ENTRY: (X)=16~RIT DIVIDEND *
20370 = (A)=8--RIT DIVISOR *
20380 * EXIT: (X)=QUOTIENT *
Q390 * (A)=REMAINDER *
DQLDD 35553 339965 363 35999696356 K 9693 3392399

@F71 34 12 Q@412 DIV1ILEB PSHS XsA DIVIDENDs DIVISOR

OF73 4F 20420 CLRA CLEAR 1/2 OF DIVIDEND

BF74 E6 61 20438 LDEB +1+8 GET MSE OF DIVIDEND

@F746 8D oe PR4402 BSR DIVIDE DO 8 DIVIDES

OF78 E7 b1 20450 STR +1+5 REPLACE 1587 1/2

BF7A Eb b2 B0460 LDBE +24 8 GET LSB OF DIVIDEND

AF7C 8D @5 @470 BSR DIVIDE DO 8 DIVIDES

OF7E E7 6% 048Q sSTe +23 5 REPLACE IND 1/Z

@QF88 35 14 20490 PULS By X DISCARD DIVISOR, GET @

oF8: 39 20500 ENDEX RTS RETURN

@F83 8E 2008 0510 DIVIDE LDX #8 SETUP COUNTER

@F86 58 a05:@ DIVeIBd LSLE SHIFT D LEFT ONE BIT

AFB7 49 @2530 ROLLA

QF 88 CA 21 20540 ORB #1 PRESET & BIT TO 1

AFBA =4 a4 20550 BCC DIVO15 GO IF C=0

OFBC AQ &2 ap562 SURA +29 8 SURTRACT MUS! GO

@QFBE = a8 o572 BRA DIVO:O CONTINVE

BF90 AR bz 20580 DIVOLS SURA +218 DO SURTRACT

@F 9L 24 @4 Q0590 BHS DIVRZ@ GO IF + OR O

OFF4 C4 FE [l ANDP #SFE RESET & RIT

AF?6 AR b2 20610 ADDA +24 8 RESTORE

QFreg 20 1F ARLIAd DIVATA LEAX ~1aX DECREMENT COUNT

AFPA =6 EA Q0630 ENE DIVO1@ GO IF NOT O

QF9C 39 QRs4 RTS RETURN TO CALLING PROG

Figure 17-4. Signed Divide Program
170

An Unsigned Divide and Signed Multiples and Divides 1 7

Qv BasLH0 END
22000 TOTAL FRRORS

DIVO1@ OF86
pivels @Fe@
DIVO:0 OF%8
DIV1i&R Q@F71
DIVDND QF 6E
DIVIDE 0@F83
DIVSOR @F70
ENDEX OF82
LOOP QF 6B
SpIdI@ @FS
ShIRz@ @F59
SDIV @F 3E

Figure 17-4 continued
The trick here is to get the sign of the result. The sign of a multiply or a divide
is the exclusive OR of the two operands:
+ times a + = + 0EOR0=0
+ times a - = - 0EOR | =1

- times a - = + 1 EOR1=0
(same for divides)

It

The EOR is taken and saved in the stack. Bit 7 of the result value is the sign, 0
(+) or 1 (-). After the operands have been converted to their absolute values,
the sign result is PULSed from the stack and used to convert the result of the
divide to the proper sign.

The operands initially should be 16-bit or 8-bit two’s complement numbers.
The results will also be two's complement numbers. Can you detect a case in
which the DIVIDE will not work properly?

1£-32768 ($8000) is divided by -1 ($FF), the result of 32,768 is too large to be
held in 16 bits. The largest positive 16-bit signed number is 32,767, or
$7FFF.

Review
To review what we've learned in this chapter:

e Sofrware divides generally use a "restoring” division technique of shift,
subtract, and possible restore

e Numbers can be “scaled up” for multiplies and divides

® Signed multiplies and divides may be done by converting to absolute
values, performing the operation, and converting the result to proper sign

® Exclusive ORing two operands for a multiply or divide will give the proper
result sign in the sign bit of the result of the EOR

For Further Study

171

KEY CHART — CHAPTER 18

INSTRUCTIONS EDTASM+ EDITOR COMMANDS
AR~ —EBHS CHRB—BS5— Ao ArSSEMBEES HNSERF RiEPLACE—
ADECA~ —BHA~ —CGHR~ —+BY- REARA— €69 “HHARBEORY)
—CeMPA— +BX —ROAB- B —MrOVE+ YERHYS-
cMPB B~ -ROA B+ MBS AR
~-GMPRH- +EAS- R ~AE— PN ~—FHBHE-
SMPS +HEAY- RS- HARBESPY ot

Bold Type = Present Chapter
Regular Type = Future Chapters
Halic Type -~ Past Chapters

172

AMNDA 4B CMPH A SHGA
ANDB BES— EMPX- LAY -5B6H- EDTASM+ ASSEMBLER COMMANDS (A)
ANDCE 188 OMPY- EStA- SEX- 60 ABSOLUTE ORIGIN /NO NO OBJECT
ASEA— B —COMA —LSEB- -SFA- OO SYMBOL TAR
~ASHE —tBF— GOMB LS —SFB HA N MEMORY ASSEMBE
—HP AN EPRINFER-
A5t B COM— +5AA4 5B 0 MANUAL ORIGIN m
ASfA- —tBM- CWAI +SAB -8F5- " NO LISTING
-ASRB- -BMF— DAA +5A— SFH—
ABR— —ONE -BECA M —SFX
BEE— ~BPE— -BEGB -NEGA SF- EDTASM+ ZBUG COMMANDS
+BEE— 1+RPt —BEC —NEGB— SUBA- ASGHIBISPEAY- —FBHSPEAYBHOEK
BES— —BRA FORA NFG- SUBH~ BTEMOEDE —F—HHARBEOPY—B+68
~ABCS— +BRA- LFORB NOP SURD CrONTFINUE- MOV BEOEHK—
BEQ—- —BRAN- —£XG BRA— SWI —BHEPEAY— YAERHFBLE6K
—BFO- —+BAN HNCA~- -ORB- SwWI2 EPHFOR- —WOROF OB
“BGE —BSA- -NEB— ORES- SWI3 6 H—BREAKPONT
+BGE— +BSA- NE~ PSHS SYNC HHALFS¥MBOHE— FAANK)—BREAKPOINF
_BGF- By S, PSHU —FFA— —tAPUTBASE— A EXAINE—PRECEDIN
+BEF —BYE ISR PHS— —FSFA —LFOADMETFHE— —EXARNENEXTF
BHE- —BYS— —+PA PULU FSFa- THNEMONEHMOPE — BRANCH INDIRECT
+BH —BYS —+BB- -ROHA FS5F NIUMERICIMODE —FORCENUMERC—
BHS —BLRA —LBO— ROLS- —OLOUTFRUFIBASE ——FORGE-NHAERHG-BY
—P-SAVE M ON-—TFAPE ——FORCEHAGS
-RIEGISTFERTDISPEAY AR
ADDRESSING MODES “SEAABOHC—DISPLAY— — SHNGLE-STER
NHERENTF—
—BIRFEF—
EXFENDES— GENERAL TOPICS
A EDHATE— -CPU-REGISTERS —SHBROGFHNES—
—SHAPLE—+NBEXED— —PATA—FOREGHSFERS— -STACK—OPERATHONS
—RELATFHAE— +OABHIGAND-STFORIMNG— ~ROFAFES—SHHFFS
~HGPEACEMENT—HNOEXED- ADDIHON-AND-SUBTFRAGHON MULHRLES-
AUTFOINCREMENTFDFCREMENTF CONDIFHON—COBES— BHADES-
INDIRECT SYMBOHCAPORESSHNG— DECIMAL ARITHMETIC
SOPHISTICATED —FIMPS—BRANCHES- BASIC INTERFACING
RELATIVE-BRANGHES— PASSING PARAMETERS
—NCREMENTSHIECREMMENTFS VARPTR USE
EQU PSEUDO OPS ORG —COMPLEMENTS ROM SUBROUTINES
—HOBICAL—OPFRATHONS OTHER ADDRESSING
FCB AMB MHEFHPEE—PRECISION— GRAPHICS
€ SET PAFA—YALES~ SOUND
+E8- SEFEF DX~ LARGER PROGRAMS
NP EXING WX —
—SORFING—

Chapter 18
Decimal Arithmetic and
Miscellaneous Instructions

Decimal arithmetic allows us to do arithmetic not in binary, but in “binary-
coded-decimal,” a way of representing decimal digits in 4 bits. The DAA
instruction adjusts binary results to bed form. In addition to looking at
decimal operations here, we'll pick up some of the miscellaneous instructions
that have “slipped through the crack”

The Decimal Instruction

The additions and subtractions we’ve been discussing in previous chapters
have all been binary adds and subtracts. However, the 6809 has the capability
of adding numbers in decimal format.

Binary-coded-decimal data represents decimal digits of 0 through 9 in groups
of 4 bits:

0000=decimal 0 0101=decimal 5
0001=decimal 1 0110=decimal 6
0010=decimal 2 0111=decimal 7
0011=decimal 3 1000=decimal 8
0100=decimal 4 1001=decimal 9

The binary-coded-decimal values of 1010 through 1111 are not allowed. In
this method of representation, each binary byte holds 2 bed digits. The four
binary bytes

00010010 00110100 01010110 01111001,
for example, would represent the 8 bed digits 12345679.

By using a special instruction, the DAA, we can add and subtract bed digits
and have them come out properly.

Look at the following program.
20100 * BCD OPERATIONS

PA17 CE BA3E 20110 BCDST LDU HREGULT+4 POINT TO IS BYIF 41
0A1A BE DA36 Qai1ze LDX HECDOP POINT TO BRCDOP1+4
BALD 1@8E BA3A aa130 LDY HRESUL T POINT TO BCDOP'+4
BAZ1 1C FE PA140 ANDCC #$FE RESET CARKY

QAZ3 C6 Q4 22150 LDe #4 ITERATION COUNT
BAZS Ab 8z 20160 PCDB1IG® LDA - X GET PYTF

DAZ7 A9 AZ o170 ADCA 2 Y ADD OPZ RYI1E
N2 19 20180 DAA DECIMAL ADJUST
DAZA A7 cz 20190 5TA v —U STORE RESULT
2AZC 5A DECE DECR TTFRATION CNT
@BAZD 26 Fé BENE BChHO1@ GO IF NOT 4
@AZF 7E @AZF LOOP JMP L OOP LOOP HERF

@A3Z: Q:3@ BCDOP1 RME 4 OP 1

BALH ABz4@ BCDOPZ RMB 4 op

@A3A 20250 RESULT RMB 4 RESULT

Figure 18-1. BCD Operations Program

173

1 8 Decimal Arithmetic and Miscellaneous Instructions

(Ll ROI6D END
P2RRY TOTAL ERRORS

BCDB1@ OAZS
BCDOP1 QA3Z
BCDOPZ BA36
BCDST @AL7
LOOP RAZF
RESULT BA3A

Figure 18-1 continued
This program takes two 4-byte operands and adds them together in a
multiple-precision operation. The first 4-byte operand is located in locations
BCDOPT through BCDOP1+3. The second is located in locations BCDOP2

through BCDOP2+3. The bed result ts stored in locations RESULT through
RESULT+3.

Alloperands are treated as 32-bit numbers, with the most significant byte on
the left and the least significant byte on the right.

If you want to run the program, assemble, breakpoint at LOOP, and store
some typical operands in BCIDOP1 and BCDOP2. Here are some examples:

Operand 1: $12, $34, $56, $78
Operand 2: $56, $78, $91, $23

Execute from BCDST and look at the results after the breakpoint is reached.

Hints and Kinks 18-1
Using Auto Decrement

We haven't used auto decrement before this program, and we'd like
to remind you that the decrement is done before the instruction
execution. Here we've loaded U, X, and Y with one more than the
last location of the operands to compensate for the way auto decre-
ment works.

The result of a binary add is predictable and not too hard to figure out, even
though we are working with 32-bit numbers:

$12345678
+$56789123

$68ACE79B

What does this number represent in binary? Some ungodly number, no
doubt. .. That’s not the point — look at the result of the bed add in the
RESULT locations.

The result of the bcd add was:

174

Decimal Arithmetic and Miscellaneous Instructions 1 8

$12345678
+$56789123

$69134801

In fact, the bed add enables us to treat the two operands as if they were

decimal numbers, and not binary. The result was the same as if we had added
the two numbers with pencil and paper.

The decimal adjust accumulator (DA A) takes each binary result and converts
it to a bed-format number. It adjusts the result from a binary result to a bed

result, eliminating the invalid bed 4-bit groups of 1010, 1011, 1100, 1101,
1110, and 1111.

Try some other operands, and you'll see the difference. Of course, you must
start off with valid BCD numbers in both of the operands, numbers that have
the valid bed digits of 0000 (0) through 1001 (9) in each digit position.

The DAA automatically handles “carries” also, so that you can work with

“multiple-precision” bed operands, just as you did with multiple-precision
binary operands.

BCD numbers take more space, as you can see from the results. Conversions
between ASCII and bcd are somewhat simpler, however. To convert from an
ASCII character of $30 through $39, representing "0" through 9. all you
have to do is something like:

CONVRT BSR GETCHR GET CHARACTER
SUB #3830 CONVERT TO BCD 0-9
STA X STORE

The SUB above converts the ASCII $30 through $39 to $00 through $09.

Hints and Kinks 18-2
Efficiency of Storage Using BCD
Although BCD data is easy to decipher (you can see immediately that
10010011 ts 1001,0011 or 93 bed), it is much less efficient in storage

than binary. You can store up to 4,295,000,000 in 32 bits in binary,
while you can store only 99,999,999 in the same 32 bits in bed!

The RMB Pseudo Op

We used an RMB, or "Reserve Memory Bytes™ pseudo op in the code above.

The RMB simply sets aside n bytes of storage; we could have specified
something like

175

1 8 Decimal Arithmetic and Miscellaneous Instructions

BCDOP! FCB
FCB
FCB
FCB

oo OO

or

BCDOP! FDB 0
FDB 0

but the RMB is handy for reserving the space and marking the area with a
label without having to enter a source line for every one or two locations.
Note that no data, not even zeroes, is stored in the area reserved. It's similar
to reserving space in a BASIC array with DIM.

Using the U Stack

Did you wonder about the U register above? The U register defines a "User”
stack, which is similar to the S stack area. The big difference is that the S stack
area is used automatically in BSRs, JSRs, and LBSRs, and in storage of
interrupt addresses. The U stack is user designated and can be used in PSHU
and PULU operations, and also as an index register!

We've used it as an index register above in lieu of using X or Y, which were
dedicated to pointing to the operands for the bed operations. When used this
way, U is initialized just as an X or Y index register, and then used in the ,U
format in Loads, Stores, and other instructions. Think of U as another index
register in operations such as the one above.

The U stack can be used for storage of data by PSHUs and PULUs the same
way as we used PSHSes and PULSes in previous programs (that’s easy for
youtosay. . .). However, the U register must be loaded with the U stack area
plus 1 before any U stack operations can be done.

LDU #$3000 SET UP U STACK

Where can this U stack be? Anywhere you want. There are no restrictions to
the location of the U stack or the size of the U stack.

Once an LDU has been done, you can use the U stack for indexing, as we saw
in the BCDST program, or for PULU or PSHU operations with impunity.

The NOP Instruction

What is a NOP? A NOP is just what it says, a “no operation.” A NOP is used
to delete instructions by substituting a NOP opcode for all bytes of the
instruction.

Suppose that you had the following code:

LDA X GET BYTE
LEAX 1X BUMP PNTR
LEAX 1X BUMP AGAIN

176

Decimal Arithmetic and Miscellaneous Instructions 1 8

and you found out that the second LEAX 1,X was not needed. You could
effectively delete the LEAX 1,X without reassembling by replacing the $30,
$01 bytes of the LEAX 1,X by NOP codes of $12 and $12. The NOP does not
affect any registers or any condition code settings.

Hints and Kinks 18-3
The CWALI Instruction

The CWAI mnemonic stands for "Clear and Wait for Interrupt”
This instruction is a “preparation” for an expected interrupt. It saves
the "environment” in the S stack and then waits for an interrupt. It's
used in an “interrupt-driven” assembly-language program which is
beyond the scope of this book.

Hints and Kinks 18-4
The SYNC Instruction

The SYNC instruction is used in “interrupt-driven” applications
programs for high-speed input/output. Again, this process is
beyond the scope of this book. (What do you want for 95 cents,
anyway?...)

Hints and Kinks 18-5
SWI, SWI2, and SWI3

These three instructions provide “software” interrupts. Software
interrupts are used in "queueing” tasks in a interrupt-driven envir-
onment. We'll cover these topics in the 32nd book of this series,
available in late 1987.

How to Use 6809 Instructions

At this point we've covered all 6809 instructions and many addressing
modes. We'll “fill in the gaps” on the addressing modes shortly. Remember
one guiding rule in working with the instruction set: There is not necessarily
a right way to do things. Many times the same program can literally be
implemented hundreds of different ways. Feel free to experiment and try
new approaches. You can’t go too far wrong. Assembly-language is so fast
that things will still move swiftly.

Review
To review what we've learned here:

® BCD operands utilize the binary-coded-decimal digits of 0000 through
1001 to represent decimal digits of O through 9

177

1 8 Decimal Arithmetic and Miscellaneous Instructions

The DAA does a decimal adjust of the A register after an add

The RMB pseudo op reserves memory bytes, but does not fill the reserved
area with data

The U stack can be used in identical fashion to the S stack for indexing and
PULU and PSHU operations

NOP is a "do nothing” instruction primarily used for patching

For Further Study

178

KEY CHART — CHAPTER 19

INSTRUCTIONS EDTASM+ EDITOR COMMANDS

— BtF— eMPB- 1+DY¥ ROR- FOIFF NOMBER] WRITET
S -LBEE ©MPD +EAS— -RF- FHNBY BRI ZBHET
> BrO emPS tEADE -RFS MIARBCOPYT Ororm
F RO CMPH tEAX— SBCA—
gc- BLS CMPX- TEAY" -SBCB EDTASM+ ASSEMBLER COMMANDS (A)
. LBLS CMEY LSLA- S /o0 ABSOLUTE ORIGIN /NO NO OBJECT
LSL8- STA- 4 N MEMORY ASSEMBLY NS NGO SYMBOL TABLE
- LB LCOMB LS STB- o e npinren /SS SHORT SCREEN
- BML LOM— LSRA STD- Mo MANUAL ORIGIN —ME WALT ON-ERRORS —
b —EBME CWAL LSREB— SIS~ N NO LISTING
. BNE DAA SR SFL
. _LBNE DECA MUL SFx—
. BRL DECB. NEGA STY— EDTASM+ ZBUG COMMANDS
o LBPL DEC- NEGB- SUBA ASCHIDISRLAY T DISPLAY- BLOGK
i -BRA EORA NEG- SUBB BHFEIMODE- T H HARDGORY BLOCK
BS- LBRA -EQRB NOR. SUBD— C{ONTINUEL U AMOVE BLOCK
B BRA- —EXG- ORA -SW BHEPEAYS- VAERHG-BLEOGK-
f— LBRN JINGA -ORB- -Swp —EBHOR— WHORD-MODE—
E —BSR- NGB~ —ORGCG- -Swya- GQaL H—BREAKFPOINF—
BE. LBSR NG _PSHS SYNG —HAL-SYMBOHG— Y AANK S BREAKROINT—
- —B¥s —IP RSHY —FRR— HANRT) BASE- R XAMINE RRECEOING—
BF— +BHE —dSR- RULS FSFA— —HOADSMLFHE R XAMMINENE=XT
. BYS DA PULL TSFO— —IHNEMONGMODE— - BRANCH INDIRECT
A LBYS LDB ROLA FST- —MAMERICIMODE— — FORGCE NUMERIC-
S CLRA— LDD- ROLB- —O{OUTFRUF)BASE— — FORGCE-NUMERIC-BYTE
P_SAVE ML ON TARE - FORCE_FLAGS—
—RYEGISTER}-DISRLAY- L EXAMINE
ADDRESSING MODES SEVABOCDISPLAY —SINGLE STER
HERENF—
b
ENDED— GENERAL TOPICS
WEDHATE ~CRU—REGHSTERS- —SUBROUTFHNES—
WP DEXED— _DATA TQ REGISTERS— STACK QPERATIONS
EAFHAE— A-CADINGAND-STORING- ROTAIES SHIETS
PLACEMENTFNBEXEDS— —ADDIHON-AND-SUBTRACTION- MULTIRLES
FOHNCREMENTADECREMENF— -CONDIFHON-COBES BHHDES—
DIRECT SYMBOLIC ADDRESSHNG- DECHAAL ARITHMETIC -
PHISTICATED SUMPRS_BRANGHES— BASIC INTERFACING
—RELATIVEBRANGHES— PASSING PARAMETERS
INCREMENTS/DEGREMENTS- VARPTR USE
PSEUDO OPS ORG COMPLEMENTS ROM SUBROUTINES
U LOGICAL OPERATIONS— OTHER ADDRESSING
B -RMB- MULTIPLE PRECISION GRAPHICS
& SET BAFA—VALUES SOUND
G SEFBA- —INDEXING— LARGER PROGRAMS
AAHDHEHHNG— AT
_SORTING

d Type - Present Chapter
pular Type Future Chapters
ic-Type- = Past Chapters

179

180

Chapter 19
Program Origin and Interfacing Assembly
Language to BASIC

In this chapter we'll see how assembly-language programs can be linked to
BASIC. This is a fairly simple process. It involves assembling the program at
the right spot in memory, defining that location to the BASIC interpreter,
and transferring control by something similar to a “BSR” For short pro-
grams, the assembly-language code may be converted to BASIC DATA values
and incorporated into the BASIC program.

One of the best ways to learn assembly language is to interface it with BASIC
in short, high-speed subroutines that complement the flexibility of BASIC. In
the next few chapters we'll show you how to do that.

Memory Map

First we'll have to get a clear idea of where we can put assembly-language
subroutines. Look at Figure 19-1. It shows the general memory layout of the
Color Computer. Some of it may be familiar to you.

$0000 WORKING STORAGE
$0400 TEXT SCREEN
$0600 GRAPHICS
PAGES SET BY # OF GRAPHICS
——————————— — 4" PAGES — MAXIMUM IS
AVAILABLE $35FF
To
$3FFF USER
$4000]
(OPTIONAL
16K
RAM)
STFFE
$8000
EXTENDED
COLOR BASIC
SOFFF INTERPRETER
$A000
COLOR BASIC
INTERPRETER
$BFFF
$C000
CARTRIDGE
ROM
AND DEDICATED
“HARDWARE"
ADDRESSES
SFFFF

Figure 19-1. Memory Layout of Color Computer
181

19 Program Origin and Interfacing Assembly Language to BASIC

The Color BASIC and Extended Color BASIC interpreter is "burned into”
ROM memory locations $A000 through $BFFEF and 88000 through $9FFI,
respectively. This, and all locations from $8000 through $FFFF, are the
"ROM” or "Read Only Mcmory™ portion of the 64K (05,536) bytes of
memory available to the system.

The memory addresses from $0000 through $O3FF, the first two 256-byte
pages of RAM (random-access-memory) are used to hold system variables
and as "working storage” for the BASIC interpreter. These locations should
never be used for assembly-language programs.

The text screen, as we've seen in previous chapters, is located starting at
$0400. The text screen ends at $O5FF. The text screen is actually a part of
normal RAM memory. In general these locations can be addressed as normal
memory locations. To write an ASCII"A™ at the upper left-hand corner of the
screen, for example, you'd simply do something like this:

LDA #65 ASCIT A
STA $0400 STORE

The area from $0600 on is used for | to 8 graphics "pages’” The maximum
number of graphics pages, 8, would use locations $0600 through $35FF. Each
graphics page is 15306 bytes long.

If you are running a pure assembly-language program, without using any
BASIC interfacing, then you will have all of the RAM from 80000 through
top of memory for your use.

If you are running a combination BASIC and assembly-language program,
you'll find that parts of the RAM area from the end of the graphics screens
are taken up by BASIC program lines, by simple variable storage, by array
storage, by the string storage area, and by the basic stack. The general scheme
is shown in Figure 19-2.

182

Program Origin and Interfacing Assembly Language to BASIC 1 9

LOow
MEMORY

BASIC
x PROGRAM 742 VARIABLE SIZE
TEXT

'JE SIMPLE VARIABLES 4 VARIABLE SIZE

P ARRAYS VARIABLE SIZE

_

.
&ﬁ

p STACK A VARIABLE SIZE
TRING |
& ssToF:aI:GE A& | SETBY CLEAR COMMAND
1 AREA s (FIRST ARGUMENT)
SET BY CLEAR COMMAND
MACHINE. (SECOND ARGUMENT)
4 LANGUAGE +
PROTECTED
AREA

“TOP OF MEMORY>——p-|

Figure 19-2. RAM Storage

The best place to put a short assembly-language program is as close to the top
of memory as possible. You may protect memory used for assembly-language
programs by entering a memory protect value by CLEAR XXX, 16127 when
you first load BASIC. The "XXX" portion of the CLEAR allocates XXX
bytes for string storage, and the next address is one less than the start of the
area to be protected. A typical XXX value would be 200.

If you enter CLEAR 200,16127, for example, you'd protect all of memory
from 16128 ($3F00) on. BASIC would not use any of that area, and you could
use it for assembly-language programs, or for any other operations.

The ORG (Origin) Command and /AO

All of the programs we've worked with up to this point have started at the
end of the text buffer/symbol table area in EDTASM+. In other words,
EDTASM+ assembles the object code starting at the first location after the
text and symbol table. However, we can use an optional assembler pseudo-op
to determine the object start. It is called ORG, for ORiGin, and has the
format

183

19 Program Origin and Interfacing Assembly Language to BASIC

ORG $XXXX,
where $XXXX is a hexadecimal starting location (or decimal).

The origin may be anywhere in RAM that you'd like, as long as it is greater
than the end of the text/symbol table area, and less than the top of memory.

A practical starting point would be somewhere around $3F00. This would be
out of the text area for most small programs, and far enough down so that it
would not interfere with the “"symbol table” and other assembler areas.
However, this starting point would only give you 256 bytes of program area.
This will be sufficient for the programs we're going to use here, but you
might want to use a lower protected address for your own larger programs.

To show you how ORG works, look at the following program.

* SAMPLE USE OF ORG

ORG $3F00 ASSEMBLE AT $3F00
START LDA NEXT LOAD A

BRA CONT JUMP AROUND DATA
NEXT FCB 23 DATA
CONT JMP CONT

END END

Assemble the program by A/AO/IM. Note that the object code starts at
location $3F00. Jot down the object code or do an A/LP listing of the object
code by assembling with your system printer.

Now change the Origin to $3E00 and reassemble by A/AOQ/IM:
* SAMPLE USE OF ORG

ORG $3E00 ASSEMBLE AT $3E00
START LDA NEXT LOAD A

BRA CONT JUMP AROUND DATA
NEXT FCB 23 DATA
CONT JMP CONT

END END

Did you notice any difference in the object code?

Hints and Kinks 19-1
The /MO Assembler Option

/MO stands for "manual origin” It allows you to define the start
address of the assembled program and the start address of the edit
buffer/symbol table. It shouldn't be used (because it's too much
trouble) unless you specifically have to redefine the memory layout.
Why would you want to redefine the memory layout? You might
have code that is not relocatable and is designed to run at location
80900, right in the middle of the edit buffer/symbol table. /MO

Program Origin and Interfacing Assembly Language to BASIC 19

gives you some control over the assembly for infrequent odd
configurations.

There are two variables in EDTASM+, USRORG ($FD) and
BEGTMP ($FF), which define the start of the object code and start
of the edit buffer/symbol table, respectively. Before running in the
/MO mode, redefine these locations as follows:

Using ZBUG, set locations $FD and $FE (USRORG) to the object
code start. Setting $FD/$FE to $3000, for example, will result in
object code being assembled in memory starting at location $3000.

Using ZBUG, set location $FF (BEGTMP) to a $07 through $7F.
This variable is similar to the DP register in that it defines the start
of a 256-byte memory page that will be the start of the edit buffer/
symbol table. Setting location $FF to $15, for example, would set the

edit buffer/symbol table start to $1500. The starting location must
be less than the USRORG value.

Again, don't use this mode unless you must, only because it's some
trouble to set it up.

Relocatability
The assembly at ORG $3F00, had

3F00 B6 3F05 START LDA NEXT
3F03 20 01 BRA CONT
3F0s 17 NEXT FCB 23

The address of 3F05 in the LDA instruction refers to the “absolute” location

of $3F05.

The assembly at ORG $3E00 had:

3E00 B63E0OS START LDA NEXT
3E03 20 01 BRA CONT
3E0S 17 NEXT FCB 23

Even though both LDAs referred to a location 6 bytes away, they used
different addresses.

Absolute addresses in Loads, Stores, and other instructions are the reason
that object code cannot simply be moved to a new location and execute
properly. A reassembly must be done.

Some instructions are “relocatable.” though. A TFR A,B will work anywhere
it is located. A relative jump also works anywhere, as it contains no absolute
address, but simply a displacement from the current program counter. (Look
at the BRA instruction for the two assemblies.)

185

1 9 Program Origin and Interfacing Assembly Language to BASIC

How to Make All Code Relocatable

In fact, all machine-language code on the 6809 can be made "position
independent” or “relocatable,’ but at the expense of using a more compli-
cated addressing mode called "PC relative!” We'll discuss PC relative address-
ing in a later chapter. For now, though, we'll assume that some code in the
examples we're using will not be relocatable.

Transferring Control to an
Assembly-Language Program

Just how do you transfer control to an assembly-language program from
BASIC? There are three steps:

I. Loading the object code of the assembly-language program into RAM
2. Defining where the object code is to the BASIC interpreter

3. Transferring control to the assembly-languge program by a USR call in
BASIC.

To show you how this process works, let’s use the following program. It is a
very simple program to clear the video display. (Never mind that there is a
CLS command in BASIC; this time we want to do it ourselves!)

Q01008 * CLEAR SCREEN PROGRAM

3Foe 20110 ORG $3F00 ORIGIN
3Fe@ 86 20 22120 CLLRSCN LDA #$20 ELANK
3Fa: 8E 0400 20130 LDX #$400 START OF SCREEN
3F@5 A7 80 20140 CLRD1® STA s X+ STORE PBLANK
3F@a7 8C Q600 @150 CMPX #4600 TEST END
3FBA 26 F9 201460 BNE CLRD1O GO IF NOT
3F@aC 39 20170 RTS RETURN

ovee 20180 END

20900 TOTAL ERRORS

CLRO1® 3JF@5
CLRGCN 3F0@

Figure 19-3. Clear Screen Program

If you assemble the program above (use A/IM/AO), you should get an
assembly similar to Figure 19-3. The important point is that the object code
should be identical.

Hints and Kinks 19-2
The Clear Screen Program

As it turns out, this program is relocatable. If you look at the
instructions, none of them specify absolute addresses within the
program. There are absolute addresses, all right — the screen start
area is always at $400, and one more than the screen end is at $600 —
but these addresses never change in any program and are hence
relocatable. The BNE is, of course, relative and relocatable. You
might want to modify the BASIC program to move the code some-

186

Program Origin and Interfacing Assembly Language to BASIC 1 9

where else. If you do, be certain to protect the new area with a
CLEAR statement.

Loading the Object
We could assemble this code by
*A NAME

and get the object output on cassette tape. The program could then be loaded
by doing a

OK
CLOADM "NAME"

from BASIC, which would load in the machine-language file created by
EDTASM+. An

EXEC
would then start the program.

However, we want to interface and control this program with BASIC, and
must therefore follow a different procedure. We'll load the object by using the
POKE statement in BASIC.

In case you're not familiar with the POKE, it works like this:
POKE 1612821 'POKE 21 INTO 16128

The POKE statement above stores a decimal 21 into RAM location 16128
decimal, which corresponds to $3F00.

There’s only one problem with the POKE. It works with decimal values in
Color BASIC, which means that we have to convert the hexadecimal values
from the assembly-language listing into decimal before we can use the
POKE! Extended Color BASIC users, however, can use the BASIC form

POKE &H3F00,&H!5

to specify hexadecimal addresses directly. Just for consistency’s sake, we'll use
the decimal form in the following examples.

You won't find converting from hexadecimal to decimal too much of a chore
as we've given you an equivalence table in Appendix IV. Also, for every
program in the book we’ll give you the actual decimal values along with the
hexadecimal values.

The hexadecimal values for the program (from the listing) are $86, $20, $8E,
$04, $00, $A7, $80, $8C, 306, $00, $26, $F9, $39.

The corresponding decimal values (from Appendix IV) are 134, 32,142, 4,0,
167, 128, 140, 6, 0, 38, 249, 57.

How do we get these values into RAM? An easy way in BASIC is is to put the

187

1 9 Program Origin and Interfacing Assembly Language to BASIC
values into DATA statements, and then POKE them into RAM with a short
loop:

100 DATA 134, 32, 142, 4, 0, 167, 128, 140, 6, 0,
38, 249, 57

110 FOR 1=16128 TO 16128+12
120 READ A

130 POKE [LA

140 NEXT 1

In this loop a READ command gets the values from the DATA list. The
POKE then POKEs the value into the current memory location (don’t forget
that 16128 corresponds to hexadecimal $3F00, the ORG point of the
program).

The "12" in the FOR .. .TO statement corresponds to 1 less than the size of
the program. If we had a program of 100 bytes, we'd use "16128+99

Hints and Kinks 19-3
DATA Values in Hex

If you have Extended Color or Disk BASIC, you can use the "&H”
prefix and use hex values for every DATA value. This makes
embedded machine-language code in BASIC much less laborious (I
just spent one hour looking for a conversion error in a DATA
value!).

We'll assume that we've run the BASIC code above and that the object
program has been loaded by the POKE:s. At this point RAM locations $3F00
through $3F0C contain the CLRSCN program in "machine language.’
Nothing mysterious here; we've been doing the same thing in our
EDTASM+ programs except that we weren't going to run BASIC along with
the program. The next step is to tell the BASIC interpreter where the
program is.

Defining Where the Object Is to BASIC

If you are running Color BASIC, the following statements will tell the BASIC
interpreter where CLRSCN s located:

150 POKE 275,63: POKE 276,0
These statements store 16128 into locations 275 and 276. Locations 275 and
276 are simply a BASIC “variable” that defines where the machine-language
program is located.
If you are running Extended Color BASIC or Disk BASIC, the following
statement will tell BASIC where CLRSCN is located:
188

Program Origin and Interfacing Assembly Language to BASIC 1 9

150 DEFUSRO=&H3F00

This statement assigns the code of "0 to the CLRSCN location of $3F00. We
could just as well have used DEFUSR3=&H3F00, assigning a code of 3.

Transferring Control to the Machine-Language Code

We're all set up now to transfer control to CLRSCN. We'll do it by a USR call.
The BASIC USR call gets the location from either the 275/276 variable or
from the DEFUSR variable and simply does a BSR. That pushes the return
address to the BASIC interpreter in the stack and saves the return point. The
last statement in our CLRSCN program is an RTS, which pops the stack and
causes a return to the BASIC interpreter.

If you have Color BASIC, this statement will do the job:
160 A=USR(0)
If you have Extended Color or Disk BASIC, this statement is the one to use:

160 A=USRO(0)
Executing CLRSCN

We've combined all of the statements above into a BASIC program that will:

I. Move the CLRSCN values from DATA statements into the $3F00 area
2. Define the location to BASIC
3. Transfer control to CLRSCN

If you execute the program below, you should see the screen clear in a flash.
Load the program by going to BASIC and doing a CLOAD "CLRSCN" from
cassette or a LOAD "CLRSCN” from disk. Before you do, however

PROTECT MEMORY BY ENTERING CLEAR 200,16127

Color BASIC users: Delete statements 153 and 163: Extended Color or Disk
BASIC users: Delete statements 151 and 161.

RUN the BASIC program.

After the screen clears, you can interrupt the BASIC program by pressing
BREAK.

10@ DATA 1343325142450+ 167512851405 6905 385 749957
110 FOR I=16128 TO 16128+12

120 READ A

130 PORE I,A

148 NEXT 1

151 POKE 275:63: POKE 276,80 ° (COLOR BASIC)

153 DEFUSRO=&H3FO@ ’ (EXTENDED COLOR OR DISK BASIC)
161 A=USR(®) *(COLOR BASIC)

163 A=USRB(@) ’ (EXTENDED COLOR OR DISK BASIC)

1706 GOTO 170

Figure 19-4. Clear Screen in BASIC Program
189

19 Program Origin and Interfacing Assembly Language to BASIC

Hints and Kinks 19-4
More EDTASM+ Assembly Options

Time we pulled together loose ends and at least mentioned the other
assembler "switch” options.

The /NO option would be used for "no object” when you weren't
assembling in memory. If the /NO option were not used, EDTASM+
would try to write out an object file to cassette tape instead of in
memory. The /NO resulrs ina display of the assembly ourput on the
screen but no object either in memory or as a cassette file.

The /NL is used to inhibit the display of the assembler listing. This
could be used for very long assemblies where even listing the
EDTASM+ output on the screen took a considerable amount of time.

The /SS stands for “Short Screen!” Using this option produces one
line of location and contents, followed by a second line of source
code. It makes the display easier to read.

Review
To review the considerable material we've covered here:

¢ Assembly-language programs can be anywhere in RAM when run without
BASIC interface

® Assembly-language programs should be in high RAM when run with
BASIC and this area should be protected by a CLEAR XXX YYYYY
where YYYYY is the start address of the program-1

® The ORG pseudo op establishes the assembly origin for a program

e [Ds, STs, and other instructions may not be “relocatable”; they may
contain absolute addresses that prevent them from running anywhere in
memory

e loading object code can be done by POKEing in BASIC after first convert-
ing hexadecimal values to decimal

e The location of the assembly-language program must be defined to the
BASIC interpreter by storing the address in locations 275,276 (Color
BASIC) or by using a DEFUSR statement (Extended Color and Disk
BASIC)

A USR call transfers control to the assembly-language program

190

Program Origin and Interfacing Assembly Language to BASIC 19

For Further Study
BASIC DEFUSR in Extended and Disk BASIC (BASIC manual)
BASIC USR or USRn command (BASIC manual)

191

INSTRUCTIONS

KEY CHART — CHAPTER 20

EDTASM+ EDITOR COMMANDS

ADPD- BLO EMPS tEAU- AFS THARDEOPY— OrtiFr

ANDA- B~ G- AKX SBEA

ANDB— —BES GMPH- LEAY SBEHB— X

ANDCE EBES OMPR t8EA SER o aae bl AR O ey
ASA- B COMA 4508 SR N MEMORTASSEMBEE NS NO—SHAHBOLTFABK
AStB~ tBtF €OMB 5t SFB— oy p Sordr o200 oS CHOBT. SCREEN
ASLT BMET COM TSARA STE mtomANUALORIGIN HHE—ALT—ON-ERRORS

Bold Type Present Chapter
Regular Type Future Chapters

ltalic-Tywpe. - Past Chapters
192

+BEE- +BP PEE- NEAB -SHBA— ATSEHIDISPLAY FOSALAV-BLOGK
BCS~ BRA- FORA- NEG -SuBs BIYTE MODE FAHAHARDEORY-BLO8
+BES— LBRA- £ORB NOP SUBb “CrONFINUES HMOVEBLOGCK-
BEO- BRN- FXG -ORA Sw— —DHSPEAY— AERHFY)BLOGK—
+BEO~ tBRN- INGA —ORB- Swe —ErDHFOR— WO MODL
-BEF— -BSA- NGB OREG Sws- 61 HBREAKPOMT
LBEE- +BSR NG~ PSHS S¥NG HIALFSYMBOLIC— HAANK)—BREAKPOMN
BEF BYE MR PSHY FRR— HNPUTIBASE— FEXAMINEPAECEOM
+BGF +BYE ISR PULS— FSFA- LIOADI Mt FItE —EXAMINENEXT
-BH BYS DA PUEH FIFR- —INEMONCIMODE — BRANCH INDIRECT
TBH tBYS DB ~ROtA -—FIF T NUMERICI MODE— ~—FORGENGMERI—
BHS- CLRA BB -ROLB- “OrOUFPUF+BASE— —FORCENUMERG BN
—P-SAYEM—ON—FAPE ——FORCEFLAGS
—HEGHSTFERDHSREAY ~AEXAMINE
ADDRESSING MODES ~SHMBOTIEDISPLAY —SHNGLE-STER—
INHERENF—
_%NBEB_EE: GENERAL TOPICS
—HAMEEHATFE— UFPU REGISTERS SUBROUTINES
~SIMPLEINDEXED— —BATAFOREGHISFERS— ~SHACK-BRERATIONS
AT —OABING—AND—SFORNG—— ROTATES. SHIFTS
ISP EACE N T INDEXED— ADDITIONAND-SUBTRACTION MULTHFLES
AU TOINCREMENTDECREMENT CONDITIONCODES DHDES
INDIRECT SYMBOLICADDRESSING DECHMAL AR FHIEHE
SOPHISTICATED JOMPS —BRANCHES BASICHNTERFACING
—REATFHE—BRANCHES— PASSING PARAMETERS
HNEREMENFSHOECREMENTS- VARPTR USE
PSEUDO OPS —COMPEEMENTS ROM SUBROUTINES
EQU ORG “+OGIEAT OPERATIONS™ OTHER ADDRESSING
€8~ AL PP RFETSHON- GRAPHICS
66— SET —PATA VAT UES— SOUND
FoB— SEFBA— NP EX R — LARGER PROGRAMS
RN A —
SORFING-

Chapter 20
Passing Parameters to BASIC Programs

In this chapter we'll discuss how to pass “parameters” between BASIC
programs and assembly-language subroutines. BASIC has a built-in capabil-
ity of allowing one 16-bit argument to be passed in either direction.

We covered quite a bit of ground in the previous lesson. Let's review what we
did.

First of all we assembled an assembly-language program using EDTASM+.
This program took the form of a "subroutine;” which, as we know, is really
any program that is terminated by an RTS, to return to a calling program.

The program was assembled at location $3F00 by using an ORG statement.
We aimed for this area because we knew that we were going to be calling the
program from BASIC and wanted to locate the program in high enough
memory to protect it from overwriting by BASIC statements, variables, and
other data.

After the assembly, we didn't load the program directly into RAM by loading
a cassette object file, although we could have by using EDTASM + assembly
options and the CLOADM and EXEC BASIC commands.

Instead, we converted the hexadecimal values from the assembly listing into
decimal values by using Appendix IV.

We then made up a BASIC program that consisted of three parts

I. A DATA statement, or several DATA statements that had all of the
machine-language decimal values

2. A short FOR...TO loop to move these values from the DATA state-
ments into RAM at the $3F00 area

3. A BASIC statement that defined where the assembly-language program
was, either by a POKE 275,63:POKE 276,0 or by DEFUSR0=16128

4. A BASIC call to the assembly-language program by a USR or USRQ
statement

We then executed the BASIC program. The program moved the machine-
code values from the DATA statements into the $3F00 areu. 1t then took the
address of the assembly-language program from either 275/276 or the
DEFUSR statement and transferred control by a simple BSR instruction,
somewhere in the BASIC interpreter.

The CLRSCN program then executed without any BASIC interference. It's
important to note that once the assembly-language program is entered,
BASIC has no control over it! That's good and bad — if the program has
errors in it, there’s no easy way to recover, as it may have destroyed critical
memory locations used by BASIC! On the other hand it lets us execute the
assembly-language code very rapidly, to supplement BASIC processing.

193

2 O Passing Parameters to BASIC Programs

The last instruction in the CLRSCN was an RTS. The RTS did not perform
magic, but only pulled the return address from the stack and caused a return
to the BASIC interpreter at some internal point. The "internal point.’ by the
way, is a set of BASIC interpreter code that handles the USR call to assembly-
language programs.

The stack used here is an internal BASIC stack, and we don't have to be
concerned about establishing our own stack area. There’s enough room in the
BASIC stack for just about everything we'd want to do in simple assembly-
language code. Besides that, if we used our own stack, we'd never be able to
return to BASIC unless we carefully saved the return address by something
like

PULS X GET RETURN
STX RETURN SAVE FOR RETURN

and then used the return address to return to BASIC at the end of the
assembly-language program.
Passing a Parameter

It's easy to see how the DEFUSR works (or the POKE 275/276), but what
about the USR call? We used the format

100 A=USR(0) or 100 A=USRO(0)

The first term is for Color BASIC and the second for Extended Color BASIC
or Disk BASIC.

What is the (0) and the A variable?
BASIC takes the value from inside the parentheses, assumed to be a 16-bit
integer value, and stores it in a special variable inside BASIC. This value can
be accessed by the assembly-language program.
For example, if we wanted to “pass” a value of 223 instead of 0, we'd say
100 A=USR(223) or 100 A=USRO0(223)
If we wanted to pass the value of a variable, we'd say
100 A=USR(B) or 100 A=USRO(B)
We could even pass the value of an expression, as in
100 A=USR(ZZ/256) or 100 A=USRO(ZZ/256)

The only requirement for the value is that it would have to be a BASIC
“integer” value of -32768 to +32767. In fact though, we can fool the BASIC
interpreter into accepting an absolute value of 0 through 65,535 by using the
following rules:

1. If the value is less than 32768, use the value alone:
100 A=USR(30000) or 100 A=USRO0(30000)
194

Passing Parameters to BASIC Programs 2 O

AFe0

3F00 BD
JFA3 8E
3F04 108E
3FQA 34
3FQC 30
JFQE 10AE
3F11 31
JF13 10AF
3F16 ED
3F18 &5
3F1A 1F
3F1C 32
3F1E BD
JFat 39

2. If the value is equal to or greater than 32768, use this form
100 A=USR(40000-65536) or 100 A=USRO(40000-65536)

You've seen in previous programs why we want to pass “parameters” to
subroutines. In the SCANTY subroutine of Chapter 15, for example, we
passed a pointer to a table and the size of the table. Parameters make the
subroutine more flexible and generalized.

The USR call, then, lets us pass one 16-bit value as a parameter to the
assembly-language subroutine.
Passing a Parameter Back

What about going the other direction? Just as you might suspect, BASIC also
allows us to pass a 16-bit value back from the assembly-language subroutine
to BASIC. You might use the assembly-language code, for example, to scan a
table for a certain value and pass back the location of the found value, if any.

The A variable in
100 A=USR(B) or 100 A=USRO(B)

is set equal to the 16-bit value returned by the assembly-language subroutine.
Of course, if the assembly-language subroutine doesn’t need to return a value,
then A is not used, and is a "dummy;’ just as the 0 value was in

100 A=USR(0) or 100 A=USRO(0)

A Sample Parameter-Passing Subroutine

To show you how this works, and what we must do in the assembly-language
subroutine, look at the following program.

0100 ORG $3F QR
DD1 1D %3533 3H 53 K599 KK I, IEIEH WKWK I KW NN K309 35X %%
PD12@ * SURROUTINE TO FIND SQUARE ROOTS *
20130 = ENTRY: SQUARE IN 16 BITS *
BO140 * EXIT+ SQUARE ROOT IN 1& BRITS *
DOIDD HEEHX KKK KK XEHERE RN N HEEREH R T T RN HHN T NN N H R RNERHR

B3ED PR160 SEROOT JSR $P3ED GET ARGUMENT

FFFF Q0170 L.DX #-1 INTTLIALTZE SQUARE Rt

2231 anis@ DY #+1 INITIALIZE ODD INTLGER

=@ 22190 PSHS Y PUT N STACK

01 SOR@1O LEAX 1y X SQUARE RT +1

E4 I DY 1S ODD INTHGER

3E LEAY -2 Y -ls - Us BETC

E£4 STY 5 RACK 10 STACK

E4 ADDD 2 & SUBRTRAC

Fz RCS SORA1A LOOP TF NOT MINUS

10 TF & XsD SO ROOT NOW IN D

b LEAS +29 8 RESET STACK

B4F 4 JOR $B4F 4 CONVERT

R4 RETURN
[ralrsl%l%d END

20800 TOTAL ERRORS

SORA1A AFAC
SQROOT 3FG0

Figure 20-1. Square Root Program
195

2 O Passing Parameters to BASIC Programs

If you assemble the program, you'll get something close to Figure 20-1. The
object code should be identical to that in the figure.

This program is a modification of the square root program found in an earlier
chapter. The parameter on entry is a 16-bit square from 0 through 65,535
(unsigned). On exit, the square of O through 255 is found. The square is taken
to the next lower integer for fractional squares.

Hints and Kinks 20-1
Stack Use in SQROOT

We've pulled some fancy shenanigans in this program with the S
stack. (Just for perspective, what we've done here would be sneered
at by many sociopathic programmers as trivial. . .)

Firstof all, we stored the "odd integer” in the stack by a PSHS. The S
register now points to the last byte of the 2-byte odd integer. Don't
forget that the S register is always decremented before the PSHS.

Now we've done an LDY ,S. This loads the 2-byte value from the
stack, as the S register is used as an “index register” and it points to
the last (most significant byte) of the odd integer value pushed. The
least significant byte is one byte higher in the stack.

The odd integer value in Y is then decremented by 2 and stored back
in the S stack.

Finally, the ADDD .S adds the odd integer value in the stack to the
contents of the D register.

During all of these operations the S register pointed to the last byte
of the last data in the stack. This type of stack reference is not
uncommon. If we had wanted to use a previous 16-bit value that was
PSHSed in the stack, we would have retrieved it by +2.,S; if there was
still another previous PSHS of a 16-bit value, we would have used
+4,S. The S register in these operations serves as a type of index
register which points to the "base address” of the last byte pushed
onto the stack.

Hints and Kinks 20-2
Relocatability of SQROOT

Again, as in the last chapter, SQROOT is relocatable. The JSR
$B3ED and JSR $B4F4 instructions contain absolute adddresses, but
these addresses are outside the program area and will never change.
The remainder of the instructions are either “inherent addressing”
types that contain no addresses, or relative branches. Again, you can
move SQROOT anywhere you'd like as long as the area is protected.

196

Passing Parameters to BASIC Programs 2 O

If you compare the earlier version of the program with this one, you'll notice
two additional instructions. The JSR $B3ED instruction at the very begin-
ning is a JSR to a BASIC interpreter subroutine. The BASIC subroutine finds
the argument from the USR call and puts it into the D register after first
converting it to integer form. This is the way that BASIC passes that 16-bit
value from the USR call. At the LDX #-1 instruction, therefore, we've got the
argument from BASIC in D.

The JSR $B4F4 instruction jumps back to a BASIC routine that takes the
contents of the D register, converts it to a “floating-point”™ format used for
BASIC variables, and stores it into the variable used in the USR call before
the equals sign. If we had

100 ZZ=USR(B) or 100 ZZ=USR0O(B)

for example, variable ZZ would contain the square after the return to BASIC.
Note that if no argument is to be returned, un RTS instruction is used. Only if

the argument in D is to be returned is the JSR $B4F4 used betore the normal
RTS.

It seems, then, that the entry to assembly language is with an optional
argument in DD and that the exit from assembly language is by an optional
argument in D.

Running the Subroutine in BASIC

The code below shows the SQROOT subroutine converted to BASIC decimal
values. (Extended Color BASIC users can use &HXX values directly in the
DATA statements.)

100 REM SQUARE /SQUARE ROOT
135 CLLEAR 200, 16127

110 CLS
120 DATA
130 DATA 3

135 DATA 31516550+9851895 180 244,57

148 FOR I=16128 To 161:28+33

150 READ A

168 POKE IsA

17@ NEXT 1

181 POKE 279:63: POKE 2Z76s@ (COLOR RASIC)

183 DEFUSR@=&HJ3FOQ@ (EXTENDED COLOR AND DISK BAGBIC)
190 INPUT S&

@1 SR=USR(SR) ’ (COLOR RASIC)

@3 SR=USRB(S®) > (EXTENDED COLOR AND DISK BASIC)
1@ PRINT "SQUARE="3S(s"SAUARE RT=";38R

220 GOTO 190

Figure 20-2. Square Root in BASIC Program

The program should print the square roots of all numbers input. If the SQ
(square) is greater than 32,767, however, you will have a problem. BASIC will
accept the entry on the INPUT statement, but when it comes time to make
the USR call, BASIC will see that the value is larger than the maximum
possible for integer values of +32,767.

197

2 0 Passing Parameters to BASIC Programs

One way to fix this is by:
201 SQ=USR(5Q-65536) "(COLOR BASIC)

203 SQ=USRO(5Q-65536) "(EXTENDED COLOR AND
DISK BASIC)

This will work for all values greater than +32,767, but will not work for
values of 0 through +32,767. What we really need is

199 §X=5Q: IF 5SQ>32767 THEN SX=58X-65530
201 SR=USR(SX) '(COLOR BASIC)
203 SR=USRO(SX) (EXTENDED COLOR AND DISK BASIC)
As SR is returned as a value from 0 to 259, there is no equivalent problem
with it.
Review
To recap what we've learned in this chapter:

& It's not necessary to use your own stack when interfacing to BASIC; BASIC
maintains its own

® The USR call passes the argument within parentheses in the USR() call if
a "JSR $B3ED"” is done in the assembly-language program

¢ The USR call returns the argument from the assembly-language program
if a "JSR $B4F4 is done directly before the RET in the assembly-language
program

® Variables are passed in the D register
e Variables must be [6-bit integer variables

e [f variables are over 32,767, then the XXX XX-65536 form must be used
to fool the BASIC interpreter

For Further Study
BASIC variables (BASIC manual)

198

KEY CHART — CHAPTER 21

INSTRUCTIONS EDTASM+ EDITOR COMMANDS
¢ BHS -CLRB—+PS- ROE —ASSEMBLEEF HNSERT RIEEPLACE—
B BHFA- SR —+Bt- —RORA SrOPH —+EABY FHARDEOPYS—
M- BIFR- EMPA +EX— -ROAB MOV HERHY—
Y- —BLE- EMPB- +P¥ ROA £ MNHABER) WHRHFE—
Y +BFE CMPB FEAS —AFE DS —PLRNFS ZBHGH
¥ BHO— EMPS tEAL AFS HARBEOPY BrtHF
W RO OMPL A SEEA
B —BES- —eMPX +FA¥ SBeS N
e EDTASM+ ASSEMBLER COMMANDS (A)
A BEF GOMA- £S5E8 -STA- N meMOoRY ASSEMBLY . NS NQ SYMROQI TARIE
B 4BLL COMB LSL -SIB /SS SHORT SCREEN
r —BM -COM 4+SRA STD- /f,'géa“;f,,,“‘““9' Eg,ig,,, e AT ONERRORS
W ABML CWAI LSRB SIS no i oTive
8- -BMNE —DAA LSR ST
= LBNE DECA MUL STX-
¢ BRI DECB NEGA SIv EDTASM+ ZBUG COMMANDS
56 LBPL DEC. NEGB SUBA -ASCHIDISRLAY F-DISRLAY BLOGK
[BRA EORA NEG— SUBR Bt¥HHMODE FH-HARDCORY-BLOCK-
BS- +BRA EOCRB -NOR SUBD -GONFNUE) HMOVE BLOCK—
B~ BRA- EXG- ORA- —SW- BHSPEAY- —VAERIFEY BLOCK —
EQ LBRAN JNCA ©ORB Swia EBHEH W(ORBMODE——
e —BSR- INCB- ORCGo- SW3 S5 X—BREAKFPONT-
GE LBSR NG BSHS SYNGC HALFFSYMBOLIC- YAANKS—BREAKROINT—
+ r-1V7al JMR —RSMY —FFR —HANRET-BASE— +—EXAMINERRECGEDING—
6+ -BV¥C SR~ RIS FSTA HOAD)MEFEE— A EXAMINE-NEXT—
L —BYS —LDA —RULU —FSIB —MNEMONIGCIMODE — BRANCH INDIRECT
W— 4BYS- -LDB ROLA ISTE MHMERHGH-MODE— - ORGFNUMERIG—
S CLRA —LDD ROLE- —O{OUTPUT) BASE + EQRCE NUMERIC BYTE
PSAVE M ON-TARE \EORGCEFLAGS—
—RLEGISTER) DISRLAY L EXAMINE
ADDRESSING MODES SLUMBOLIC DISPLAYS — SINGLE STEP
WERENT- '
REGF—
TENDED— GENERAL TOPICS
MEDIATE— -CRU-REGISTERS SUBROUTINES
UPLE INDEXED— DATATO-REGISTERS— —STACK QPERATIONS-
LATIE— LOADINGAND-_STORING- —ROTATESSHIETS.
BREACEMENTFNDEXED —ADBHHON-AND-SUBFRAGHON -MULHRLES -
O INCREMENTHECREMENT- —GONBHHON-GOBES- —BHDES—
D|RECT S¥A4QQ‘ lé; 499RESS‘A‘G DECIMAL ARITHMETIC
PHISTICATED MRS BRANGHES— _BASIC INTEREACING
—RELATIVE BRANGHES- PASSING PARAMETERS
ANCREMENTS/DECREMENTS VARPTR USE
" PSEUDO OPS COMPLEMENTS- ROM SUBROUTINES
BRE LOGHOAL—ORERATHONS— OTHER ADDRESSING
B— -RMB— MLTRLE PRECISION GRAPHICS
- SET BATFAYAIES- SOUND
8- SE&rDR ANDEXING— LARGER PROGRAMS
HNHDEXAN G T XY
SORTING—

id Type - Present Chapter

gular Type - Future Chapters

licType - Past Chapters

199

200

Chapter 21
VARPTR and Passing
Multiple Arguments

Extended Color and Disk BASIC have the VARPTR command, which per-
mits the user to find the address of a BASIC variable. This command can be
used to pass the location of strings or arrays to an assembly-language
subroutine. Another topic we'll discuss in this chapter is how to pass “multi-
ple” arguments between BASIC and assembly-language subroutines, rather
than just the one 16-bit argument allowed in the BASIC USR call.

The VARPTR Command

Those of you with Color BASIC can skip this section, as only Extended Color
and Disk BASIC have the VARPTR function.

VARPTR lets us find the address of any variable in a BASIC program. This is
tmportant to assembly-language subroutines because it allows the assembly-

language subroutine to access BASIC data such as arrays and strings.

The format of VARPTR is
100 VARPTR(XX)

where XX is a variable name.

VARPTR can be used either with numeric variables, array variables, or with
string variables.

Using VARPTR With Strings
When VARPTR is used with a string variable, it has the format of

100 A=VARPTR(AA$)
where AAS$ is any string variable name.

VARPTR will put the address of a string “descriptor block™ in the AA$ (or
other) variable. The string descriptor block s shown in Figure 21-1.

201

2 1 VARPTR and Passing Multiple Arguments

BYTE @ LENGTH IN BYTES
1 RESERVED
2 LS BYTE OF ADDRESS
3 MS BYTE OF ADDRESS
POINTS TO
s RESERVED. FIRST BYTE
OF STRING
LENGTH OF
s ¥ I A
ad g STRING
E
R
s

Figure 21-1. String Descriptor Block

The first byte of the string descriptor block is the length of the string in bytes.
Each character in the string occupies one byte and the total number of string
bytes may be 0 to 255.

The third and fourth bytes of the string descriptor block define the actual
address of the string.

Where are strings located?
If you have a string in a BASIC statement, such as
100 A$="THIS IS A STATEMENT STRING”

then the string will be in the BASIC program statements itself. BASIC
statements start in low RAM before variable and other storage and continue
to build upward.

If you have a string that is "processed,” such as
100 A$="THIS IS A PRO"
110 B$="CESSED STRING"
120 C$=A$+B$

then the string will be found in the string storage area. This is a temporary
storage area for strings that are not present in BASIC program lines. The
string storage area is in high memory, just below the protected area for
assembly-language subroutines and a BASIC stack.

To pass the location of a string to an assembly-language subroutine, you'd
have to do something like:

202

VARPTR and Passing Multiple Arguments 2 1

100 SL=VARPTR(ZX$) 'FIND STRING DESC
BLOCK LOCATION

120 A=USR(SL) or A=USRO(SL)

Of course, we've left off all of the other logic concerned with moving the
machine-language values and defining the location here. In this case, BASIC
would have the location of the string descriptor block (not the string) ready
to be picked up by a BSR $B3ED.

Using VARPTR With Arrays

When VARPTR is used to find the location of an array, it has the same basic
format as with strings. To find the location of array ZX, a numeric array, you
would use:

100 A=VARPTR(ZX(0))

This finds the location of the first element in the array ZX. A numeric array
is made up of 5-byte elements.

For a one-dimensional array, the elements start with 0, 1, 2, etc. The 10th
element of numeric array ZX, for example, would be 50 bytes after VARPTR
(ZX(0)).

For multiple-dimensioned arrays the format is more complicated, and we'll
leave it up to you to research (information on array formats is in the BASIC
language manual for your Color Computer).

String arrays are not "contiguous’ as are the other types of arrays String
array descriptor blocks are grouped together in one mass, however, as shown
in Figure 21-2.

203

2 1 VARPTR and Passing Multiple Arguments

Low
l MEMORY I
7
-+ -+
1 STRING +
DESCRIPTOR
F STRING (0)
+ BLOCK (9) X ADDRESS O (/]
-+ -+
A J
1 STRING _4
DESCRIPTOR
-+ BLOCK (1) -1
-

ADDRESS OF STRING (1)

STRING
® (®)

)

STRING
(1) 4
A T
I HIGH
| MEMORY]

Figure 21-2. String Arrays

To find the location of any string array, just use the index of the array variable
as in

100 A=VARPTR(AS$(5))
The address of the string descriptor block will be returned in A.

To show you how VARPTR works, enter the following program, or use the
Lesson file:

204

VARPTR and Passing Multiple Arguments 2 1

3F00

3Fee
3F3
3F@s
3FQ7
3FeY
3FA
3FBE
3FOF
3r1t
3F13
315
IF16
3F18

00100 ORG $3F00
DO1 1D 333353365 3306033676396 06 336936066 0363636 0696 06 3636369 36 3 06 36 3 3 % 3¢
20120 * SUPROUTINE TO PRINT STRING IN REVERSE *
20130 * ENTRY: STRING DESCRIPTOR BLOCK LOCATION *
20140 * EXIT: PRINT IN REVERSE ON SCREEN *
[l T R e L e s T T T EE

BD B3ED 2016 PRTSTR JSR $R3ED GET PARAMETER

iF ez ou170 TFR DrY MOVE TO Y

E6 A4 2r180 LDE Y LENGTH OF STRING

AE 22 201950 LDX Y GET STRING LLOCATION

3A Boz00 ABX FIND END OF STRING+1

108E 0Q50A anzio LDY #$500+10 POINT TO SCREEN CENTER

5D oaz:e TSTR TEST COUNT

27 a7 Q0230 BE® PRTO9@® GO IF "NULL" STRING

Ab 8z 80240 PRTB10@ LDA s —X GET STRING CHARACTER

A7 AD AB:50 STA s Y+ STORE ON SCREEN

5A BD26D DECB DECREMENT COUNT

26 F9 0270 ENE PRTOL@ GO IF NOT DONE

39 62282 PRTBYD RTS RETURN TO PASIC

2000 o290 END

oBere TOTAL ERRORS

PRT@1@ 3F11
PRID9® 3F18
PRTSTR 3F0@

Figure 21-3. Print String Program

PRTSTR first calls the BASIC subroutine at $B3ED to get the string descrip-
tor block location. It assumes something like A=VARPTR(A$) has been
done in the BASIC program, and that the string location is waiting to be
picked up.

The string descriptor block location in D is then transferred to Y. B is loaded

with the string length, which may be 0.

The next load loads X with the actual address of the string from the 3rd and
4th bytes of the string descriptor block.

X now contains the address of the string, whether itis in a BASIC statement
or string vartable storage.

The length in B is now added to X by the ABX instruction. The result points
to one more than the last character in the string.

Y is loaded with the location of the approximate center character position of
video memory. As you recall, the video memory goes from $400 through
$5FF, and the center minus a few character positions is at about $500+10.

The string length in B is now tested for 0. If the length is 0, nothing will be
printed on the screen, and a jump is made to the return point.

If the string length is not 0, the PRT010 loop prints the string in reverse on
the screen, using the string pointer in X, the screen pointer in Y, and the
counter in B.

205

2 1 VARPTR and Passing Multiple Arguments

Hints and Kinks 21-1
Notes on PRTSTR

We used the auto decrement in PRTSTR. For that reason, we had X
point to the end of the string+1, as we knew that the first LDA -X
would decrement first before the load. Note that we used a TSTB to
set the Condition Codes. We mentioned the TSTB early on, but
haven't used it for a while. It is simply a one-byte test of A, B, or
memory location that sets the Condition Codes without having to do
a CMP #0 or other such instruction.

A BASIC program using this code is shown below:

1@@ REM PRINT REVERSE STRING

101 REM EXTENDED COLOR OR DISK BASIC

11® CLS: CLEAR 1000,&H3EFF

120 DATA 189+17992379319 25230y 1645174434558
130 DATA 1611425551093+ 39575 16691305 14674160
14@ DATA 905 381249+57 ’

150 FOR 1=16128 TO 1612B+24

160 READ A

17@ PORE I,A

18@ NEXT 1

193 DEFUSRQ2=&HJIF Q0

200 SB=0

Z1@ INPUT A%

220 CLS

230 SPR=VARPTR(AS$)

243 SR=USRQ(SR)

58 GOTO 210

Figure 21-4. Print String in BASIC Program

Even if your BASIC code does not look quite the same, the DATA values
should be identical.

Run the program above or yours, and you should see any string that is input
displayed across the screen in reverse.

An important point about using BASIC programs: VARPTR locations tend
to move! Touse VARPTR properly, you must use it just before the USR call
and not introduce “new" variables before the CALL. That's why we defined
variable SB in line 200 instead of defining it with the VARPTR call. Any new
variable may move all variables down, invalidating a VARPTR location.

Passing Multiple Arguments

We've seen how we can pass a single 16-bit argument or parameter to an
assembly-language subroutine and how to pass one argument back. How can
we pass several arguments? After all, even the subroutines we used earlier
required more than one argument.

There are a number of ways to do this. If the arguments are small enough,
then you can pack two into one 16-bit integer number. If we had wanted to

206

VARPTR and Passing Multiple Arguments 2 1

clear the video display from a given line and character position, then we
might have had something like this:

A3 3 A I K ko

*CLEAR SCREEN FROM LINE X, CP Y
* ENTRY: (A)=LINE #, 0 — 15
* (B)=CP, 0 — 31 *

A0 O I R R O e e e e o e e e

In this case the line values and character position values are small enough to
fit into a byte each, and there’s no reason why we can’t pack them together.

Another way to pass multiple arguments is to use the 16-bit value passed
from BASIC as a pointer to a "parameter block.” The parameter block could
be filled with POKEs from BASIC and could be in a predefined protected area
of RAM.

Suppose that we had the following parameters to pass to an assembly-
language subroutine that searched a string array for a given string. We might
have something like this
Location $3F00=MS byte of first descriptor block
$3F01=LS byte of first descriptor block
$3F02=MS byte of # elements in string array
$3F03=LS byte of # elements in string array
$3F04=MS byte of search string block address
$3F05=LS byte of search string block address

We used an area of protected RAM to hold the parameter block. The first two
bytes hold the address of the first descriptor block of the string array. The
next two bytes hold the number of elements in the array. The last two bytes
hold the address of the search string descriptor block. These values could all
have been put into the parameter block by BASIC POKEs.

The search subroutine can output arguments in the same way. It can store the
output parameters as follows:
Location $3F06=MS byte of found string or -1
$3F07-=LS byte of found string or -1
$3F08=element number if found

The BASIC program can then pick up the output parameters by PEEKs.

207

Z 1 VARPTR and Passing Multiple Arguments

Hints and Kinks 21-2
Another Parameter-Passing Option

Another way we could pass parameters is by making the “parameter
block™ location variable and passing the location to the assembly-
language subroutine by the USR call. This would make the subrou-
tine a more "generic’ type of subroutine that would process a
parameter block in any location. As a rule, it's always wise to make
assembly-language code as “general-case” as possible. This type of
code is called “parameterized.”

Review
To review what we've learned here:

e VARPTR is used in Extended Color or Disk BASIC to find the location of a
BASIC variable

® The location of any variable type may be found by VARPTR

® Each string in BASIC is defined by a "string descriptor block™ that holds
the string length in the first byte and the string location in the third and
fourth bytes

® VARPTR locations may change between the VARPTR use and the USR
call if previously undefined variables are used

® Multiple arguments may be “packed” into 16 bits if their number ranges
are small enough

® Multiple arguments may also be passed via a parameter block in a pro-
tected area of memory; this block is used by both BASIC and the assembly-
language program as a “common’” area

® POKEs and PEEKSs can be used by BASIC to store and read values from the
parameter block

For Further Study
BASIC PEEK (BASIC manual)

BASIC VARPTR (BASIC manual)
BASIC array formats (BASIC manual)

208

KEY CHART — CHAPTER 22

INSTRUCTIONS

TP UPTPIeT P PTRRIEE

ADDRESSING MODES

ERENF—

FF—

ENDED-

EBATFE

PHEANBEXED—

A

YACEMENFINDEXED-
HNCREMENTDECREMENT
RECT

HISTICATED

PSEUDO OPS
| o6
B
SET
- SEFBP-

r

Type Present Chapter
lar Type - Future Chapters
~Jype - Past Chapters

EDTASM+ EDITOR COMMANDS

RORA- CroPrr +TOAB

RORB- PrELEFES —HrovEr VERYT—

ROR EOHF “NTOMBER— WrRHFE—

RE- FHNB— ~PHRHFF P BHE—

RES +HHARDEOPYS -OfHF—

SBGA

S868- EDTASM+ ASSEMBLER COMMANDS (A)

SE% L AQ ABSOLUTE ORIGHN— LNO-—NOOBJECT

SFA AN EMOAYASSEMBY HNENO-SYMBOL TABLE-

ST b LINE PRINTER— /SS SHORT SCREEN—

SFO— MO MANUAL ORIGHN— WA T—ON—ERRORS—

SFE L NOLISTING—

SFH—

SFX—

SFy— EDTASM+ ZBUG COMMANDS

SUBA- ALSCHIDISPLAY F-BHSPEAY-BLOCHK

SUBB- -BHYFEHMOBE FHHARDCOPY-—BOEK

SUB5- U MOVE BLOGK-

-SW— | BHSPLAY)- VAERIFY) BLOGK

S EBHOR— —WHORDHIAOPE

Sy -Gto— HX—BREAKPOINF—

SYNG- —HALF)SYMBOLIG- VAANKf—BREAKPOINT

FER. HNRUFBASE— —EXAMINEPRECEDHNG—

FSFA OADH—FHE— — EXAMINENEXT—

FOTB- UNEMONICHMODE— —~ BRANCH INDIRECT

FST. MHUIMERIGHMOBE— —FORGENIMERIC
BLOUFRHFBASE— —FORCENUMERHC-BYFE
R SAVE ML-ON—TARE- —FORCE-FLAGS-
RLEGISTERI-DISPLAY- |—EXAMINE
SMBOLHCBHISRIAY— —SINGLE-STER-

GENERAL TOPICS

—CPREGISTERS— SUBROUFINES
DATA TO REGISTERS™ STACK OPERATIONS
—L OADINGAND-STORING— ROTAFES—SHIFFS
FADDI FION-AND-SUBTRACTION- MOLFIPLES—
-CONBIFHON-CODES— BHABES—
—SYMBOHEADDRESSING— BECHAALARHFHHHEFIE—
—FHARS—BRANCHES BASHGANFERFAGHNG—
-RELAFHE-BRANCHES- PASSHHG—PARAMETERS—
INCREMENTFSIHDECREMENTS YARPTRUSE
—COMPLEMENTS ROM SUBROUTINES
—OGICA—OPERATIONS OTHER ADDRESSING
HHHTFHPLE—PRECISION- GRAPHICS
BAFA—AHES— SOUND
NDEXNG LARGER PROGRAMS
HHBEHHNG—AHTFHHY—
SORFING—

209

210

Chapter 22
Using ROM Subroutines

ROM subroutines are subroutines in the BASIC interpreter program that are
available for the assembly-language user. The ROM subroutines perform
useful functions such as reading a keyboard character, displaying a character
on the screen, or reading a cassette byte. The BASIC interpreter has many
different subroutines that might be usable, but the ones we'll be discussing
here are subroutines that are "documented” in Radio Shack documentation.
[t would be very difficult to document all possible subroutines. Later revisions
to the BASIC interpreter might be very difficult if all subroutines had to
remain fixed in both location and input and output parameters.

There is a list of many ROM subroutines in the user manuals for EDTASM+,
Extended Color BASIC, and other Radio Shack manuals. We'll just be work-
ing with two ROM subroutines here. They are

1. Get Keyboard Character, (address at) Location $A000 (indirect)
2. Display a Character, (address at) Location $A002 (indirect)

Cautions On Using ROM Subroutines

One of the most important points that we can make about ROM subroutine
use is that you must be aware of which registers the subroutine uses. This is
true for any subroutine called, ROM subroutine or not, although we didn’t
stress this too greatly in previous chapters.

The Get Keyboard Character subroutine, for example, returns the code of the
next key pressed on the keyboard in the A register. In doing so, it alters the U
and S registers.

The Display Character subroutine displays the ASCII character in A, but in
doing so, it also alters the Condition Codes.

[f you are using registers to hold a pointer value, or any other quantity, it may
be destroyed after a return is made from typical ROM subroutines. Prior to
calling the subroutines, therefore, you must PSHS or PSHU any registers (or
Condition Codes) that you want to preserve.

As a matter of fact, if you are unsure of which registers are used in a
subroutine, there's no reason why you can’t PSH all of the registers, or at least
all of the ones you're using. To save all registers takes only 1 instruction:

PSHS CCAB,DPX,Y,UPC SAVE REGISTERS

Using Display a Character and Get Keyboard Character

Display a Character

This ROM subroutine is entered with a display character in the A register
and with a 0 in RAM location $6F (DEVNO). The DEVNO location is a
“working storage” location used by BASIC to define to what device the
character should be sent; O is the screen and -2 is the printer. The subroutine

211

2 2 Using ROM Subroutines

displays the character at the current screen location and then returns to the
user program. Doesn't sound like much, does it? In fact, though, you have all
the power of the Display Driver at your disposal through this entry point.

Using Display a Character is as simple as it looks. Put a 0 in $6F, put the
character in A and JSR “indirect” to location $A002. Use SHIFT, DOWN
ARROW for left bracket and SHIFT, RIGHT ARROW for right bracket to
denote indirect addressing.

Get Keyboard Character

This ROM subroutine is entered with no parameters and returns to the user
program with an ASCII character representing the next keypress in the A
register, or with a zero if no key was pressed. The character entered is not
displayed on the screen. A JSR indirect to location $A000 is done for this
ROM subroutine (JSR [$A000).

Here again, this doesn’t seem like a very powerful subroutine, but don't
forget that implicit in this call are dozens of bytes of instructions, including
keyboard debouncing, "n” key rollover, and other processing.

With only these two ROM subroutines as a base, you can build a whole series
of your own subroutines that can translate character strings, perform special
display functions, do word processing, and other applications.

A Simple Text Editor

To show you how these two subroutines can be used to build on, we've written
a simple text editor. This program will utilize the Get Keyboard Character
and Display Character subroutines to implement a "“stand-alone” text editor
that will allow you to enter text and store it on the screen. The screen cursor is
controlled by the up arrow, down arrow, right arrow, and left arrow keys; you
may move the cursor anywhere on the screen that you wish to initiate new
text, or to overwrite old.

Using ROM Subroutines 2 2

3FoRa

3Fee BD A92B

3FD3 OF &6F

3FB5 AD 9F AROQ

3F@9 27 FA

3FQE 8E 3FZA

3FQE Co

3F10 Al

3F12 27

3F14 5A

3F15 26

3F17 AD

3F1E 20

3t 1D 1F

3F23

3Fzb6 IF

3F28 6E

3F2A

3F 2B

3FzC

JFzD

3FZE

3F30

3F32

3F 34 3F45

3F36 CC FFEQ

3F39 0 (5]0]

3F3e CC g

JF3E 20 a8

3F40 CC P21

3F43 20 23

3F45 CC FFFF

3F48 D3 88

3Fa4A DD 88

3F4C 1083 0400

3F5Q 24 o7

JF52 C3 2200

3F55 DD 88

3F57 20 AC

3F59 1BB3 BOSFF

3FSD &3 Ab

3F5F 83 z00

3F6L 20 F1
ladrdnit}

P0RAB TOTAL ERRORS

BTAR 3FZE

CUR@1® 3F55

CUR@Z® 3F59

CURSOR 3F48

DWNARR 3F 3B

FTAR 3FZA

FTARBP1 3FZzR

LFTARR 3F45

MINITE 3F0Q

RGTARR J3F40

TXTQi@ 3F05S

TXT@12 3F10

TXT@15 3F17

TXTO2@ 3F1D

UPARR 3F36

2100
20110
o0iz0
201.30
20140
22150
22160
20170
00182

02390
o400
20410
0420
20430
02440
20450
PR460
202470
20480
20490
20500
20510
205:0
20530
Bas40
20550
QO560
D570
20580

ORG $3F00
L Ry g e S S Y T2 ad]
* MINI TEXT EDITOR *
LR e R sy e S SRR R
MINITE JSR $A LN CLEAR SCREEN

CL.R HHF INITIALIZE DISPLAY
TXTR1®d JSR +$A0DD~ INPUT CHARACTER

REQ TXTO1Q GO [F @

L.DX #HFTAPR FUNCTION KEY TABLE

1.De #4 SIZE OF TABLE
TXT@1Z CMPA s X+ SEARCH FOR KEY

BE® TXTA:20 GO IF FOUND

DECP. DECREMENT COUNT

BNE TXTO1Z GO TF NOT END
TXTO15 JSR AEADD 2+ NOT FOUNDs TEXT

RRA TXT@1@ GO FOR NEXT CHARACTER
TXT@z®@ TFR XsD PNTR TO D

SuUeD #FTAR+1 FIND INDEX

LELE INDEX*Z

ADDD #ETAB POINT TO SUBROUTINE

TFR Ds X NOW IN X

JMP ty X JMP OUT
FTAR FCB S5E UF ARROW
FTARP1 FCR $0A DOWN ARROW

Fce 09 RIGHT ARROW

FCB 08 LEFT ARROW
BTAR FDE UFARR UP ARROW PROCESS

FDe DWNARR DOWN ARROW PROCESS

FDE. RGTARR RIGHT ARROW PROCESS

FDE LFTARR LEFT ARROW PROCESS
UPARR LDD #--32 ONE LINE PACK

BRA CURSOR GO TO CHANGE ~CURSCR
DWNARR LDD #+32 ONE LINE FWARD

BRA CURSOR GO TO CHANGE CURSOR
RGTARR LDD #+1 ONE CP FORWARD

BRA CURSOR GO TO CHANGE CURSOR
LFTARR LDD #-1 ONE CP PACK
CURSOR ADDD 88 CHANGE CURSOR LOC

STD $88 STORE (MAY BE CHANGED)

CMPD #4400 TEST FOR BEFORE START

BHS CURBZ® GO IF NOT BEFORE

ADDD #4200 WRAP AROUND
CURD1® STD $88 STORE

BRA TXTR1@ GO FOR NEXT CHARACTER
CUR@Z® CMPD #$5FF TEST FOR BEYOND END

BLS TXT@1@ GO IF 0K

SURD #$2200 WRAP AROUND

BRA CURD1® GO TO STORE

END

Figure 22-1. Text Editor Program

If you want to run this program, assemble it by normal means and execute

from MINITE.

213

2 2 Using ROM Subroutines

You'll see the program clear the screen and position the cursor in the upper
left-hand corner of the display, the HOME position. You can now enter text
and move the cursor around with the arrows.

The Get Keyboard Character subroutine at [$A000] returns a code
corresponding to the key pressed. Usually this is an ASCII code correspond-
ing to an alphabetic character, numeric character, or special character, such
as "#’

The subroutine, however, also returns codes for special keys, such as the
arrow keys, ENTER, and others. You'll find a complete list in the back of your
BASIC manual. The ones we'll be considering here are the codes for up arrow
($5E), down arrow (80A), right arrow (809), and left arrow ($08).

These keys will initiate special actions in MINITE to move the screen cursor.
The cursor position is held in a BASIC.RAM variable at location $88 (two
bytes). Since we'll be using the display driver of BASIC in MINITE we'll have
to "“maintain” this variable to control the cursor position.

The $88 variable holds the current cursor position in terms of the absolute
address of the text screen from $400 through $5FF. We can change this
variable to change the cursor position.

Let’s take a more detailed look at the program:
TXTO10 starts the main loop of the program.

A ROM subroutine at $A928 (not indirect) is called to initialize the display.
This subroutine also establishes the current cursor position as upper left
($400 at $88).

A zero is stored at location $6F to initialize the device type to the display.

The next keypress is input from the Get Keyboard Character subroutine. A
scan is then made through the FTAB table to see if the input character
matches any code in the table. There are 4 codes in the table, corresponding to
the arrow key codes. At the end of the scan, the X register points to the
character if the character has been found (BEQ).

1f the character has not been found, then the character is a "normal” text
character. It's output to the display by CALLing $ A002 "indirect” at TXTO15.
Note that up to this point, no character has been output; reading in the
character does not automatically display it. After the output, a loop is made
back to TXTO10 to input and display the next character.

If the character is found in the FTAB, then the start address of FTAB is
subtracted from the contents of D, into which the X register has been
transferred. D now contains an index of 0, 1, 2, or 3. This index value is
doubled by a Logical Shift Left of B and added to the starting address of
BTAB, a "branch table”” At the end of the add, D points to a branch address
corresponding to the processing for the special key. D is now transferred back

214

Using ROM Subroutines 2 2

to X. A JMP [, X] “indirect jump” then causes a jump not to the BTAB, but
indirectly to the address specified in the BTAB location.

Each of the 4 cursor control processing routines adjusts location $88 to the
next or previous line or next or previous character position by adding or
subtracting a “displacement” for the position in the text screen. If the
position is before the beginning of the screen or after the end of the screen,
$200 is added or subtracted to cause a “wrap around” of the cursor position.

Hints and Kinks 22-1
The Clear Screen ROM Subroutine

The Clear Screen ROM subroutine is one of those “undocumented”
ROM subroutines we've been telling you about. We're taking a
chance in using it here, but we've thrown caution to the winds.
Location $A928 should hold a $C6, and the next location should be a
$60, as a double check on the ROM version. If you don’t see these
values, "NOP” the ROM call, or leave it out on assembly.

Hints and Kinks 22-2
Screen Wraparound
The effect of adding $200 if the screen cursor position is before $400

is to move the cursor to the end of the screen, but at the same
position as the “phantom line” before the first screen line.

The effect of subtracting $200 if the screen cursor position is after
$5FF is to move the cursor to the beginning of the screen, but at the
same position as the “phantom line” after the last screen line.

This effect is known as “screen wraparound.”

Hints and Kinks 22-3
Indirect Addressing

You can see how indirect addressing works from the JMP | ,X|
example. The jump was made to the "effective address;” the address
defined by the contents of the location determined by ,X. Anytime
you see an address enclosed by left and right brackets, it will mean
indirect addressing is in force. (The left bracket is a SHIFT, DOWN
ARROW and the right bracket is a SHIFT,RIGHT ARROW.) We'll
discuss this mode more in the next chapter.

2 2 Using ROM Subroutines

Using ROM Subroutines for Your Own Code

The simple program above shows you how you can take advantage of some of
the existing ROM subroutines to eliminate a lot of tedious coding. Look for
other examples of keyboard input processing, display output, line printer
output, cassette operations, and disk operations in your BASIC and other
manuals.

Review

To review what we've learned in this chapter:

® There are a number of documented ROM subroutines that can be used to
eliminate your own assembly-language coding for keyboard input, display
operations, and others

® When using these subroutines, or any subroutines, you must be aware of
which registers may be destroyed by the action of the subroutine; save
these registers by PSHS or PSHU before the subroutine call

® Display Character subroutine outputs one character to the video display,
and uses the full logic of the BASIC display driver software

® Get Keyboard Character inputs the next keypress from the keyboard input
driver or a 0 if no key has been pressed

For Further Study

Character codes for input and output (BASIC manual)
ROM subroutines (BASIC and other manuals)

216

KEY CHART — CHAPTER 23

INSTRUCTIONS EDTASM+ EDITOR COMMANDS
- tBHS CERB—tPS~ ROt ATSSEMBLES WNRSERT™ R{EPTACET
A~ BHA- -CtR- tBbY RERA CSroPYs HOAD) THARDCOPYT—
- BHB- EMPA B¢ —ROAB- DffELEFE) MOVE) VrERFY
YoA— Bt eMPs tPYy- ROR ErBrTT NTOMBERT WIRITET
W +BtF eMPD- tEAS R FHND) PIRINTT ZrsUGT

8- BtS CMPX +FAY SBCS EDTASM+ ASSEMBLER COMMAND
PEE tBLS- OMPY —tStA- SEX- 0 spcoruTe Qq,QA‘Sn E A AN
HA- BF— —COMA 18— SFA— ‘ NSNS YAMBOL TABLE
- R COMB— S ~ST8 ¥ 'Q’ !;N‘;;qﬂgm'"SSE’”B“ SS SHORT SCREEA
= Bh- COM tSRA STO- MO AAAN ARG
RA— LBM— -CWA+ —+5R8 SF5 N NOLISTING WE—WATTONERRORS
RE- BN~ —DAA~ 18R~ STt
g tRNE —PFCA- M- ST
¥ -BPE BFEB- NEEA S EDTASM+ ZBUG COMMANDS
e ~+BP— —-PEE- NEGB SUBA ATSCHDISPHA- FOISPEAY-BLOEHK—
- BRA— —FORA- NEG- SUBB BFEMODE- ~FHARD G PY-BEOEK
5~ +BRA- FORB -—NOP ~SuBD CrONFANUE OV E—BLOGH—
- BRN- XG- ORA S BHSRLAY) YAERIEY) BLOGCHK—
O~ +BARAN— INCA~ —ORB Siyre EHOHOR WHORD-MODE—
B BSR— INEB- ORECE S 69— X—BREAKPOHNTF—
GF—~ +BSA— A6~ PSHS S¥NE HHALR-SYMBOLIG- ~Y~AANKF—BREAKPONF
- By HAP- PSS~ FFR— HNRUTBASE A EXAMNEPRECEBING—
8F +BVE ISR PHHS— FSFA— —AOADMLEILE— A EXAMINENEXTF—
- BYS A PO FRFR— -MNEMONICHMODE— —~ BRANCH INDIRECT
W S BB RO+A- —FSF NUMERIGMODE— A ORCE- NG RHG—
K- GLRA~ +PB—~ ROLB- -BtOUFPHFHBASE —~—FORCENUMERICBYFE
P SAVE A ON—TFARE— ~FORGCE-FLAGS—
—R{EGISTER}) DISRLAY L EXAMINE
ADDRESSING MODES ‘
NERENT- SMBOLIC-DISRLAY~ SHGLE-STEP
RECT—
FENEED— GENERAL TOPICS
MEDIATFE CRU-REGISFERS SUBROUTFINES—
WPHE—NBEXED BAFA—TFO-REGISTFERS- STACK—ORERATHOMNS—
AT AL OADINGAND—SFORNG— ROTAFES ~SIHHFTS—
WPEACEMENF—HNDEXED~ ADDITHON-AND-SHBFRACTHON MULTHRLES—~
FOANCREMENTADEC R F— CONDHHON-CODES— —DHUBES—
DIRECT SYMBOLIC ADDRESSING— DECIMAL ARITHMETIC
PHISTICATED ~UMPS BRANCHES— BASICAINTERFACING-
RELAFHE—BRAMNCHES RASSINGPARAMETERS
ANCREMENTSIDECREMENTS- —VARRTIRLISE—
PSEUDO OPS _COMPLEMENTS— ROM SUBROUTHES—
u ORE LOGICAL—OPERATIONS OTHER ADDRESSING
&~ ARG MULTIPLE PRECISION— GRAPHICS
— SET DA TA— A AES— SOUND
- ~SEFOR- ANDEXING— LARGER PROGRAMS
XN G AT Y
SORFNG—

1Type Present Chapter
ular Type Future Chapters
+Tupe - Past Chapters

217

218

Chapter 23
Addressing Modes, EQU and SET

In this chapter we're going to fill in the addressing modes that we mentioned
briefly or not at all. The addressing modes that we've been using up to this
points are the most common — inherent, immediate, extended, direct,
relative, and indexed — but there are a lot of variations of these modes and
several modes that we haven't covered that are very powerful.

We'll also talk about about two EDTASM+ pseudo ops that we've neglected,
EQU and SET.

Using the S and U Stack Pointers with Indexing

Most of the instructions using indexing used either the X or Y registers as
index registers. However, in the general case, X, Y, S, or U can be used as
index registers interchangeably. If you'll look at Appendix Il under “Indexed
Addressing Modes, you'll see that the "R™ opposite the indexing type can
stand for any of the four registers.

S and U With Offsets

Sand U point to the last used stack location, us shown in Figure 23-1. Whena
signed displacement type indexed operation is done with S, data in the stack
can be accessed very easily. By "data in the stack”” we mean data that has been
pushed into the stack that has not yet been retrieved. All data from the stack
pointer (S) address up to the original top of stack is valid. All data from the
stack pointer address -1 and below is invalid. Why?

LOW MEMORY

DATA HERE
INVALID FOR
S STACK

DATA FROM PSH A ~4——S OR U REGISTER
POINTS TO LAST
4 DATA FROM PSH X -+ USED BYTE

DATA FROM PSH B

1+ DATAFROMPSHY -

HIGH MEMORY
Figure 23-1. S and U Register Use
The reason that data "below” the stack is invalid is that the S stack is

219

2 5 How to Use Other Addressing Modes

constantly being used, not only by code in your own program, but possibly by
interrupt processing routines that use the S stack for return addresses and
condition codes. As good programming practice, never assume that data “out
of the stack™ (below the current stack pointer location) is valid.

Hints and Kinks 23-1
Stack Philosophy

The whole purpose of the stack is to create an area in memory that
can be used for storage of data and addresses by any number of
subroutines or interrupt routines without conflict. The stack pointer
always points to the next available byte to be used and never destroys
any data for a “higher-level” subroutine or interrupted code segment.
This permits such techniques as "recursiveness,” where a code seg-
ment calls itself as a subroutine, and "reentrancy” where multiple
interrupts or tasks can use the same code segment; in both cases
stack storage of results will be non-conflicting.

Generally, then, even though the S register may be used as an index register, it
is normally used to retrieve data that exists in the stack and not beyond. This
amounts to using S as an index register only with a positive displacement to
address data "in the stack” (see Figure 23-2).

[
1
LOW MEMORY !
3.8 NEGATIVE DISPLACE-
2 MENT VALUES ARE
g NOT USED
1.8
<————S REGISTER
1,8
12,8
13,8
*4.8 POSITIVE DISPLACE-
5,8 MENT VALUES ARE
65 USED TO RETRIEVE
g DATA IN THE STACK
7.8
I
1
|
A *
T «— — “TOP OF STACK"
HIGH MEMORY

Figure 23-2. Using the S Register as an Index Register

The U stack, on the other hand is not used by “hardware” An interrupt
processing program should save the "state” of the user stack, and the U
register can be used for indexing both forward and back from the base
address. See Figure 23-3.

220

How to Use Other Addressing Modes 2 3

LOW MEMORY

THIS DATA { -5,U
SHOULD
A e NEGATIVE DISPLACE
35?;?2;_“ su MENT VALUES ARE
RUPT PRO- -2,U USED TO RETRIEVE
PREVIOUS DATA
CESSING {_ 1,U
-4————U REGISTER
+1,U
2,U
*3,U
POSITIVE DISPLACE-
*4,U MENT VALUES ARE
5, USED TO RETRIEVE
| DATA STILL IN STACK
4 x |
< — —|_"TOP OF sTACK"

HIGH MEMORY
Figure 23-3 Using the U Register as an Index Register

Suppose that we pushed the A, X, and Y registers into the S stack, and then
did a BSR to a subroutine. We could "pass parameters” by accessing the stack
data from the subroutine by indexing. An example is shown here:

SUBROU LDA +2.8 GET A PARAMETER
[LDX +3.S GET X PARAMETER
LDY +5,S GET Y PARAMETER

The three instructions pick up the data in the same order it was put into the
stack. We started out with a +2 to bypass the return address, which is stored at
S. If we had done a

PULS AX)Y GET THREE PARAMETERS

it would have picked up the wrong data, as the first two bytes in the stack are
the return address. The "index” operation works out very nicely for picking
up the parameters from the stack without “resetting” the stack.

Returning From a Subroutine
The "normal” way to return from a subroutine is to execute an

RTS

which pulls the return address from the stack, storing it into the Program
Counter, and causing an automatic branch back to the instruction after the
BSR, LBSR, or JSR.

Analternative way to return, however, is to “purge” the stack of data pushed
into the stack in the subroutine in addition to loading the PC. Here's an
example:

221

2 5 How to Use Other Addressing Modes

SUBROU PSHS XY SAVE X AND Y
LBSR NEWSUB GO TO STORE SUBROUTINE
PULS X,Y,pC RECOVER X)Y, RETURN

This subroutine “saves” the X and Y registers and then calls another
subroutine NEWSUB. On return from NEWSUB, the PULS not only re-
stores X and Y, which may have been restored in NEWSUB, but also loads
the PC with the return address to effectively do an RTS.

Hints and Kinks 23-2
When Do You Save Registers?

Cpu registers are saved in the "main line” code before calling a
subroutine, or in the subroutine itself. We're talking about saving
registers in the stack, of course, and saving registers that are used in
the subroutine for processing. Since the 6809 has a limited number
of registers, compared to such microprocessors as the Z-80, it’s
probably best to assume that all registers will be destroyed in subrou-
tine processing, and to save any important results in the stack before
the subroutine is called.

Using Auto Increment/Decrement

Continuing with the “Indexed Addressing Modes™ of Appendix 11, let’s
consider Auto Increment and Decrement. Here again, the "R register that

can be automatically incremented or decremented is any of the 4 registers X,
Y, U, or S.

We've used X and Y frequently in this mode. Recall that

LDA X+
LLDB Y+

would increment X by one count after A was loaded with the memory byte
pointed to by the X index register, while Y would be incremented twice after
B was loaded with the memory byte pointed to by the Y register
and that

LDA
LDB

X
Y

»

>

would decrement X by one count and load A with the contents of the
effective address, while Y would be decremented twice before B was loaded
with the contents of the effective address.

The same technique can be used with U and S. Auto increment of S or U
would reset the stack by one or two bytes, while auto decrement would create
one or two more "unused” bytes in the stack:

LDA S+ GET STACK BYTE (PULS A)
STB ,U- SAME AS PSHU B

222

How to Use Other Addressing Modes 2 3

In fact, the most common use of auto increment/decrement will be X or Y,
followed by S, followed by U (least usage).

Accumulator Offset from R

This addressing mode is one that we haven't used previously. Think of it as
the same as a "displacement” (offset) indexed mode with the displacement
not in the instruction, such as

LDA +100,X

but in either the A, B, or D register. If the A register contained $FC and the B
register contained +5, then the instructions:

LDY AX
LDY B,X
would be exactly equivalent to:
LDY -4,X
LDY +5,X

In other words, the value in A or B is used as a displacement value to be added
to the contents of the index register to form the effective address.

The D register can also be used in this format. If D contained -1000, the
instruction

LDY D)X
would be equivalent to

LDY -1000,X

These forms of displacement (offset) indexing won’t be used as frequently as
the type where the displacement is specified in the instruction, but are handy
to use where A, B, or D contain an "index” value.

Here again, the index registers that can be used for this type of addressing are
X and Y, but also (less frequently) U and S.

Program Counter Relative

This is another addressing mode type that we may have mentioned briefly,
but did not cover in detail. In this mode, the effective address is formed by
adding an 8- or 16-bit (no 5-bit) displacement value from the instruction to
the contents of the Program Counter register.

Take this code sequence, for example:

223

2 3 How to Use Other Addressing Modes

ORG $3F00

START LDA COUNT GET COUNT
LDA COUNT,PCR GET COUNT
JMP NEXT BYPASS DATA

COUNT FCB 23 DATA=23

NEXT JMP NEXT LOOP HERE
END

This is a nonsensical code sequence as it loads the A register twice, but it’s
worth assembling to see what happens.

The assembly is shown in Figure 23-4.

3Foo 20100 ORG $3F00

3F00 R6 3F QA 20118 START L.DA COUNT GET COUNT

3F@3 Ab 8D 2003 ©’1z0 LDA COUNT PCR GET COUNT

3F@7 7E 3Foe @130 JMP NEXT BYPASS DAIA

3FoA 17 20140 COUNT FCP 23 DATA=Z3

3Fee 7E JFoe @2150 NEXT JMP NEXT LOOP HERE
2000 02160 END

22000 TOTAL ERRORS

COUNT 3F @A
NEXT 3Foe
START 3F00

Figure 23-4. Program Counter Relative Program 1

The first instruction is our old friend, extended addressing, which assembles
with an absolute address in the instruction itself.

The second instruction, though, assembles as $A6, $8D, $00, $03. The first
byte of this is the opcode for the LDA, indexed $ AG. The second byte is $8D,
which tells the 6809 that this is Program Counter Relative, 16-bit displace-
ment. The third and fourth bytes are the most interesting. When these bytes
are added to the contents of the PC, the result will be the effective address of
the operand. Here we've got $3F07 in the PC. Adding $0003 gives us $3F0A,
the address of COUNT.

Now change the ORG to $3E00 and reassemble. The result is shown in
Figure 23-5. The instruction is still $A6, $8D, $00, $03! Since this instruction
is always relative to the contents of PC, it will never change and will always be
relocatable. The operand is defined relative to the contents of the PC.

3EQ0 o102 ORG $3E0Q

JEQD B6 3E@A P0110 START t.DA COUNT GET COUNT

3EA3 AL 8D 0003 0Di:e L DA COUNT PCR GET COUNTY

3E@7 7E 3EQE o130 JMP NEXT BYPASS DATA

3EBA 17 22140 COUNT FCB >3 DATA=23

3EQE VE JEQR 20150 NEXT JMP NEXT LOGP HERIZ
2200 00160 END

Ao0Vd TOTAL ERRORS

COUNT 3EQA
NEXT JE@B
START 3EQ@

Figure 23-5. Program Counter Relative Program 2
224

How to Use Other Addressing Modes 2 5

Note that we didn’t have to specify a displacement in this instruction. We
only had to specify the label of the operand; the EDTASM+ assembler located
the label of the operand and then calculated the proper displacement, putting
it into the instruction displacement byte.

When would you use this type of addressing? Anytime that you wanted your
code to be “position independent” or "relocatable!” It should be used for LDs
and STAs, and other instructions which would normally assemble in
extended addressing mode. Note that to make an existing instruction of this
type fully position independent, all you have to do is to add a “,PCR" at
the end:

LDA OP1 LOAD OP 1
LLDB OP2 [.LOAD OP 2
becomes:
LDA OPI1,PCR LOAD OP 1, POS IND
LDB OP2,PCR LOAD OP 2, POS IND

Hints and Kinks 23-3
“Relocatable” Vs. “Position Independent”

"Position Independent” is probably a better term to describe code
that can be executed in any portion of memory without reassem-
bling. Code can be “relocated” by adding a suitable "bias” to every
absolute address, and there might be some confusion over this
technique and “position independent” relocatable code.

Indirect Addressing

In indirect addressing, an extended mode address or an indexed mode address
is first computed by normal means. This address is then used to retrieve a
16-bit address from memory, which then becomes the effective address for
the instruction. We saw an example of this in the last chapter when we had a
table of addresses:

BTAB FCB UPARR
FDB DWNARR
FDB RGTARR
FDB LFTARR

We wound up with a pointer to a BTAB entry in the X register. We were then
able to JMP out to the processing routine UPARR, DWNARR, RGTARR, or
LFTARR not by jumping to the BTAB address, which would have resulted in
invalid instructions, but by jumping “indirectly” to the address of the table.
The JMP instruction was a

225

2 5 How to Use Other Addressing Modes

JMP [(x)]
where left and right brackets were used to define the “indirectness”

Indirection can be used in extended addressing such as:

LDA [STDATA| GET DATA VALUE

JMP NEXT GO TO NEXT
STDATA FDB TABLE+1 POINT TO TABLE
TABLE FCB 17

FCB 8

which loads A not with the constant “"TABLE+1" in STDATA, but with the
value found in TABLE+1, a value of 8.

Indirection can also be used in most indexing modes, such as auto increment/
decrement and Program Counter Relative. A complete list is shown in
Appendix 1I under “Indexed Addressing Modes.

Indirection is always indicated by left and right brackets, generated by a
SHIFT, DOWN ARROW and a SHIFT, RIGHT ARROW, respectively.
Note that the brackets are different from left and right parentheses.

When Is Indirect Addressing Used?

In simple programs you probably won't be using indirect addressing much. It
is handy for indirect JMPs and for defining pointers “dynamically”” We've
tried to present the addressing modes in a manner that reflected the amount
of use in less complicated programs.

Even in more complicated programs, indirect addressing will probably be
rarely used, but it can save three or four instructions spent loading an address
value into an index register and will not waste a cpu register in the process.

The EQU and SET Pseudo-Ops

We've covered all pseudo ops in EDTASM+ with the exception of two, EQU
and SET. These pseudo ops are used to set a label equal to some value. EQU is
a one time definition, while SET can be used several times.

Suppose that you wanted to use the carriage return (ENTER) character
repeatedly to cause a new line to be displayed or printed. You could say:

CR EQU 13 DEFINE CR

Thereafter, any time you used the symbol "CR" the code 13 would be used in
assembly, as in

LDA #CR LOAD 13 INTO A
226

How to Use Other Addressing Modes 2 5

The EQU is kind of a "forced symbol table entry” that puts the EQU label
into the symbol table with the value assigned to it in the operand field.

Here's another example of an EQU:

LDB

TABLE FCB
FCB
FCB
FCB
FCB
TABISZ EQU

#TABLSZ LOAD TABLE SIZE

12 TABLE OF CONSTANTS
13

8

10

1

*-TABLE COMPUTE TABLE SIZE

In this case an EQU was used to set label "TABLSZ” equal to the size of the
TABLE. The "*” character is a special EDTASM+ character that means “the
value of the current assembly location!” If TABLE were at assembly location

$3F00, for example, "*"

would be at location $3F05 when the EQU was

encountered, and TABLSZ would be set equal to $3F05-83F00, or 5.

EQUates can also be used with addresses, as in:

TABLE FCB
FCB
FCB
FCB
FCB
TABLSZ EQU
TABLEl EQU

12 TABLE OF CONSTANTS
13

8

10

1

*-TABLE COMPUTE TABLE SIZE
TABLE TABLEI=TABLE

which would make TABLE and TABLE! synonymous.

TABLE
EMPNO

EMPNAM

Hints and Kinks 23-4
More on the Asterisk

The asterisk, as we've mentioned, stands for the current assembler
location. A common technique for equating one location with sev-
eral labels, or defining fields in a table goes like this:

What we’ve done here is to define a table as "TABLE” at the current
assembler location, say $3F00. "EMPNO" would also be defined as

EQU *
EQU *
RMB 3
EQU *
RMB 25

227

2 3 How to Use Other Addressing Modes

$3F00. "EMPNAM" would be defined 3 bytes later at $3F03. The
entire table would contain 28 bytes.

The SET pseudo op performs the same function as the EQU, except that SET
can be used more than once. If the CR character were to be redefined for a
different type of printer, for example, you might have

CR SET 13 DEFINE CR FOR PRINTER 1

CR SET 10 DEFINE CR FOR PRINTER 2

SET is seldom used compared to EQUates.

Hints and Kinks 23-5
Branch Indirect

There’'s a ZBUG “one-time” typeout that allows you to “open” a
location “indirectly”” Suppose that you are examining in ZBUG and
have the following sequence:

3002/ CMPA #23
3004,/ BNE 300F
3006/ JSR >35AS

You'd like to examine the sequence at 35A5 at this point to see what
instructions are there. You can easily do this by using the RIGHT
ARROW “branch indirect” command, which will "open” a new
location in a kind of indirect examine:

3006/ JSR >35AS (RIGHT ARROW)
35A5/ CMPA #17
35A7/ BRA 3600

Review
To recap what we've learned in this chapter:

® The S and U registers can be used fully as index registers in the same
fashion as X and Y

® When S is used as an index register, take care not to go “out of stack”
® The S and U registers can also employ auto increment/decrement

® Program Counter Relative addressing creates instructions that are fully
relocatable and are relative to the current PC contents

228

How to Use Other Addressing Modes 2 3

¢ [ndirect addressing obtains the contents of a memory address computed
within the brackets and uses it as an effective address for the actual
operand

® The EQU pscudo op sets a label equal to an operand, which may be another
label, numeric value, or expression

229

KEY CHART — CHAPTER 24

INSTRUCTIONS EDTASM+ EDITOR COMMANDS

ADEA BHA— —CtR- +Bt— ARERAR ErOPYS —+OAD —FHARDECOPYS
ABE8—- BHB- EMPA tBX— ASRB BHEEETE) —tHOVES ~ERHF)
ADBA—~ B EMPB +BY¥ —-RER RaE=cawa OUMBERT WA

“#PPB Bt eMPD tEAS— R B PR ag=ieacy

ANDB BES reMPX EEAY- SBES-
ANDEE- tRES EMPY- —LSHA— SEX EDTASM: ASSEMBLER COMMANDS (A)
CAStA- BLF COMA 45tB S o ADOOtUTE MO NO-—NO—OBHCF
AStH- —BLF COMB 5k —5FB- _ia MEMORY ASSEMBEY HNEHO-SHIBOTAB
ASt— B €omM —SRA— ST o T TOMNEER “SS—SHORT-SCREEN
ASRA- B SWA+ —+5R8 S5F5 WO~ MANOAL ORIGIN AN E—AF-ON—ERROA
ASRB -BNE— BAA +SA SFY NENOHISTING
AR EPME— BEGA R SEF
BEC BPt- -BECS NEGA— ST EDTASM+ ZBUG COMMANDS
+BEE —tBPE BEC- TNEGB- SuBA ATSCIT DISPLAY P AY—BOCHK-
BES— BRA- FORA NEG- —Suss- BIYTESMODE— FHHARDCOPYBLOE
tBES —tBRA- FORB- NOA SupB CTONTINUE— S MOVE-BLOCK—
BEQ BRN EX6- ORA Swr OMSPLAYT— VHERIFYBLOEK—
+BEQ- ABRN INGA- OREG Swi- TIDFoH- AHORDMODE—
—-BeE- -—BSA- NEB OREES Swg TIOT N BREAKPOINT
+BGE EBSA— NE— —PSHS- S¥NG AL SYMBOLEC- Y (ANK) BREAKPOINI
BGF— —BYE— IMP- PSHY FFR— THNPUTBASE —t EXAMINE-PRECEDIA
+BGF +BYE ISR —PUES F5FA LTOADIMCFREE ENAMINE NEXT
—BH- BYS DA PUEY FEFA- MNEMONICMOBE — BRANGHHNDHIECT
+BH- tBYS— BB~ ROtA- FSF NUMERIGITMODE RSNSNSNTNNA
BHS— CtfA— 55~ ROtH OrOtFPUFBASE- —FORCENUMERICBY
PSAVE M ON—TAPE —FORCE—FLARS-
REGISTER DISPLAY —EXANINE
ADDRESSING MODES
+RHERENT— STYMBOLIC DISPEAY— —SINGLE-STER
“DIRECT
EXTENDED GENERAL TOPICS
HEMERIATE GRU-REGHSTERS— SUBROLHHNES-
SHURLEANDEXED— -DATA FO-REGISTERS- STACK QPERATIONS-
RELATHE LOADING AND-STORING- BOTATES SHIETS—
BHSRLACEIMENTAHNOEXED— ADDUTION-AND-SUBTRAGHON MULTIPLES
ALTOANCREMENTDECREMENT— CONDHHON-GCODES— DHHDES-
HNOIREGT ~SYMBOLGADDRESSHIG DECHAALARITFHMETIC
SOPHISHEATED—~ ~UMPS BRANCHES— BASICINTERFACING—
RELATIVE BRANCHES -PASSING PARAMETERS
ANCREMENTFSDECREMENTS WARRTR-LSE-
PSEUDO OPS
one LOGICAL ORERATHONG— WEE
FGB— -RMB-
F56— s MULTRLE RREGISION— GRAPHIC
£D8 SETOR DATAVALUES- SOUND S
HNDEXNG— LARGER PROGRAMS
LRGN —
SORHNG

Bold Type Present Chapter
Regular Type - Future Chapters
Ralic-Type - Past Chapters

230

Chapter 24
Assembly-Language Graphics

In this chapter we’'ll take a brief look at assembly-language graphics on the
Color Computer. We'll review the way memory is laid out for graphics, look
at some of the graphics modes, and finally see how we can implement a
“Times 4 Zoom” feature for graphics mode 4.

BASIC Vs. Assembly Language

In the following discussion we're going to assume that you'll be interfacing to
Extended Color BASIC with short assembly-language routines. There's a
good reason for this — the Extended Color BASIC commands for graphics —
LINE, "box; "filled in box;” CIRCLE, "ellipse, “arc,, DRAW, PAINT, and the
rest are so powerful that to duplicate them in assembly language would be
very difficult. After all, these functions are in assembly language, and operate
fairly efficiently. Therefore, we'll assume that you'll be using Extended Color
BASIC to create graphics with some help from short assembly-language code
to create new functions that aren’t found in BASIC.

Memory Layout for Graphics

First of all, let me put a plug in for my Radio Shack book “Color Computer
Graphics”” If you are going to be doing anything in graphics, it's a quick
reference guide to using the Color BASIC and Extended Color BASIC gra-
phics commands, graphics architecture, and graphics routines. We won't
cover graphics in detail here, as much of the material is already in "Color
Computer Graphics”’

There are, as you probably know, two different display areas, one for “text”
and one for "graphics.’ These are shown in Figure 24-1.

Note

The graphics pages start at location $E00 in Disk BASIC systems. This
chapter is referenced to a non-disk system.

231

24 Assembly Language Graphics

$0000 /
7 7 B/ ﬁc/?//
wonxmc
/ STORAGE
$0400
TEXT SCREEN 5§12 BYTES
$0600
GRAPHICS
PAGE 9
$0Ce0
GRAPHICS
PAGE 1
}— UP TO 8 GRAPHICS
PAGES
(12,288 BYTES)
% %
$3000
GRAPHICS
PAGE 7
$3600 | !

Figure 24-1 Display Areas

The first area is the text screen, located at 8400 and going up to $5FF, a total
of 512 bytes representing the 16 rows of 64 characters each.

The second area contains the graphics pages of 1536 bytes each and starts at
$600. Depending upon how many pages you allocate by the Extended Color
BASIC PCLEAR command (1 to 8), there may be from 1536 to 12,288 bytes
of graphics area. The "default” amount is 4 graphics pages, or 6,144 bytes.
Any area above the last graphics page is used for storage of BASIC text,
variables, etc.

The Text Screen

The text screen is divided into 512 “character positions,” 16 lines of 32
characters each. Each of these character positions may represent either an
alphanumeric or special character or a limited graphics character. We say

232

Assembly Language Graphics 24

“limited” because the graphics in the implemented modes for the text screen
are just not as dense as the graphics in the graphics pages.

There is one byte in memory for every character position on the text screen
for the one “implemented” "semi-"graphics mode. (There are 4 unimple-
mented “semi-"graphics modes for the text or graphics screens that allow
high resolution, but at the expense of complicated "mapping” of more than
one byte per character position; see my book.)

These bytes follow a one-for-one mapping with the character position on the
screen. The byte at $400 is line 0, ¢p 0, the byte at $401 is line 0, cp 1, etc.

If the high-order bit of the memory byte 1s a 0, then the byte represents
an alphanumeric or special character. These characters are internally gener-
ated by a "VDG” or Video Display Generator chip which contains the dot
matrix layout of each character and controls the graphics logic of the Color
Computer.

If the high-order bit of the memory byte is a I, then the byte represents
graphics data as shown in Figure 24-2. The first bit is a [, the next three bits
are the color code 000 through 111, and the last four bits are the element
on/off status.

[[-817 cHaRACTER coDE]|

IF-@ THEN
CHARACTER
CODE
L. >t
IF 1 THEN 1]

GRAPHICS \

L 1 1 L L
[1] cogr] onorr |
7 6'514 3al20979

000- GREEN
001 YELLOW
010-BLUE

011 RED

100° BUFF

101- CYAN
110-MAGENTA
111-ORANGE

Figure 24-2. Text Screen Character Coding

Because there is only one color code for each byte, you can see that all of the 4
elements per character position must be the same color, even though there

233

24 Assembly Language Graphics

are 2048 separate elements per text screen when all character positions have
been set to graphics mode.

You can control the text screen very easily in assembly language by simply
storing the proper bytes in text screen memory. To draw a thin line at the top
of the screen, for example, you'd do:

LDX #$400 POINT TO SCREEN START

LDA #$BC RED, TURN ON ELEMENTS
DRAWL STA X+ DRAW LINE

CMPX #8400+32 TEST FOR END

BNE DRAWL LOOP FOR ONE LINE

The kicker is the term "simply storing”; nothing seems to be simple in
computers, with the possible exception of being able to buy new equipment.
Assembly language can easily be used to draw simple horizontal and vertical
lines, or even diagonal lines on the text screen, but it is quite a bit more work
to draw lines of any angle or shapes on the text screen.

The Graphics Screens

The problem is solved for us on the graphics screens where we have the
built-in commands of BASIC for doing all kinds of things.

The graphics modes are of two types, either a 2-color or 4-color. There are
two “color sets” that can be selected by the BASIC SCREEN command, but
within each color set there are only 2 or 4 colors.

There are actually 8 graphics modes available with the VDG chip; extended
BASIC implements the highest resolution 5 of them, and they are, of course,
selected by PMODE 0 through 4. See Figure 24-3.

234

Assembly Language Graphics 24

MODE

64x64 F

128x64 T

128x64 F

128x96 T
(PMODE 0)

128x96 F
(PMODE 1)

128x192 T
(PMODE 2)

128x192 F
(PMODE 3)

256x192 T
(PMODE 4)

SCREEN
64—
64
FOUR 1024
COLORS BYTES
:.E_ua__> 1024
64 BYTES
TWO
COLORS
<L128 —
64
FOUR 2048
COLORS BYTES
128 — | 1536
96 BYTES
TWO
COLORS
4—123——»
96
FOUR 2048
COLORS BYTES
¥ 2048
128 —p-
192 BYTES
TWO
COLORS
“ 128 —»
192
FOUR
6144
Y COLORS oYTES
A 6144
it —_—
192 256 BYTES

TWO
Y COLORS

Figure 24-3. Graphics Modes

VIDEO
MEMORY
REQUIRED

N e e e et e e e e e e e N e e =N e N

Note that there are three 2-color modes and two 4-color modes.

1024
BYTES

1536
BYTES

2048
BYTES

3072
BYTES

6144
BYTES

In the 2-color mode, there is one bit for every graphics “element” on the
screen. In the highest resolution mode, for example, the 256 horizontal by
192 vertical mode (PMODE 4) there are 256%192 bits, or 49,152 bits per

screen. This is equivalent to 49,152/8 or 6,144 bytes, divided up among 4
graphics pages.

235

24 Assembly Language Graphics

In the 4-color mode, there are 2 bits for every graphics “element” on the
screen. In the highest-resolution 4-color mode, for example, there’s
128%192%2, or 49,152 bits per screen again.

The 2-color and 4-color mode mapping is shown in Figure 24-4. You can look
on the mapping of the screen in memory as being a two-dimensional array of
32 bytes across by 192 bytes down. Each row across represents either 128
four-color elements or 256 two-color elements.

32 BYTES ACROSS
128 FOUR-COLOR ELEMENTS OR 256 TWO-COLOR
ELEMENTS
e e e

=]
Rows) / \
L 7 A\
/ \

ONE BYTE IN ONE BYTE IN
TWO-COLOR MODE FOUR-COLOR MODE
1 D O A
k——‘—Y-_—~’—J
ON/OFF STATUS 4 COLOR CODES
OF 8 ELEMENTS OF 2 BITS EACH

FOR 4 ELEMENTS
Figure 24-4. Two-Color and Four-Color Mapping

To set any of the elements to the foreground color in the 2-color mode, all
that must be done is to set the corresponding bit to a one. In the 4-color mode,
a color code of 00,01, 10, or 11 in binary is stored in the 2 bits corresponding
to the element.

Suppose that we were in 2-color PMODE 4. To set the middle row, we'd do
something like:

LDX #32%96+3600 POINT TO MIDDLE ROW

LDA #$FF ALL ON

LOOP STA X+ TURN ON 8 ELEMENTS
CMPX #32%96+32+8600 TEST FOR ROW END
BNE LOOP GO IF NOT END

236

Assembly Language Graphics 24

Of course, here again, it would be very difficult to implement a full-fledged
"graphics package” set of commands, but these are in BASIC anyway. Assem-
bly language can be used to supplement BASIC commands very nicely,
however.

Hints and Kinks 24-1
Setting the Graphics Modes

BASIC sets the various graphics modes for you. However, it is
possible, and not difficult, to set the graphics modes, including those
“unimplemented” modes, without BASIC. You'll need to know
something about the logical architecture of the Color Computer in
regard to several chips in the CoCo, including the VDG. See “Color
Computer Graphics”

As an example, of an assembly-language supplementary function, let’s con-
sider a program to "ZOOM"™ magnify a portion of a graphics screen.

The ZOOM Program

The ZOOM program magnifies or “zooms” the display, as shown in Figure
24-5. ZOOM can be called from BASIC to magnify the screen after the
desired figures and graphics have been drawn. It works with one "quadrant”
of the screen at a time, expanding 1/4 of the screen to full size. It operates
only in PMODE 4, the 256 by 192 two-color resolution mode, although it
could easily be modified to the other two 2-color modes and, without too

much additional work, to the two 4-color modes.
BEFORE ZOOM

1 “ZOOM"
| QUADRANT

AFTER ZOOM

)

Figure 24-5. ZOOM Action

237

24 Assembly Language Graphics

Here’s how ZOOM is implemented. One of the 4 quadrants, O through 3, is
specified. This quadrant is then physically moved to the quadrant 3 area. The
operation doesn’t take too long in assembly language (less than 1/10 second),
and makes the calculations a lot easier. (Another version could be imple-
mented that did not relocate the quadrant; it would have four cases.)

After the quadrant is moved to quadrant 3, one row of quadrant 3 (the
“source” data) is processed at a time. Each row of the source has 256 bits.
Each bit generates a cluster of 4 bits for the X4 magnification, as shown in
Figure 24-6.

96 ROWS OF
QUADRANT 3

ONE BIT IN
THIS ROW
GENERATES
4 BITS IN
MAGNIFIED
TWO ROWS

ROW N

ROW N+1

Figure 24-6. Times Four Magnification Action

The process continues through the 96 rows of the quadrant 3 data. Data is
read from quadrant 3 from left to right and from top to bottom. It is stored on
the full-size screen in the same fashion. By the time it gets down to the lower
right-hand corner of quadrant 3, it has been written to nearly all of the screen.
Reading and storing the data in this fashion avoids any problems of “over-
writing” the quadrant 3 data.

The ZOOM subroutine is shown in Figure 24-7. It consists of three parts.
Let’s start the description from the bottom up.

238

Assembly Language Graphics 24

3F20

3F o0
3F03
3F@5
3Fa7
3Fes
aFee

BD
C4
86
3D
c3
iF

3FOD AE

3F0F

3F13
3F15
3F17
JF19
3F1e
3F1D
3F21
3F23
3F26

3F29 2

3FZB
3F2E
3F32
3F34
3F36
3F38
3F3A
3F3D
3F3F
3F42
3F45
3F47
3F48
3F4A
3F4C
3F4E

3F50
3F52
3F 54
3F56
3F59
3F5C
3FSE
3F5F
JFbH1
3F63
3F&65
3IF&67
3F6A
3F6D
3F70

1@8E

B8E
188E
8D
1F
C4

8C
30
31
Z0
39

cé
&F
&F
&F
&F
AL
44
24
&C
6C
6C
6C
&C
6C
33

1210
0600
1EGB
3FO6
B3ED

a3
oz

3F48

@3

C4
1210

80
AQ
20
oF

1E00

08

88 19
AB 10

EB

1210
2600

1C
10
oF
F8

1EDD

88 1@
20

A8
ER

2600
Bs610
1200
1210

08
A4

21

AB Z
AB 2

84

oF
21
21
21

AB

A8
A4

21
21

21

20100
20110
o010
20130
20140
20150
00160
20170
20180
20190
02200
o0:10
’oz:o
22230
20240
Q0250
Q0260
20270
20280
o029e
2B300
20310
22320
22330
20340
@e3se
20360
Po370
02380
20390
22400
Q410
BR4:0
PR430
22440
Q0450
B0460
00470
20480
20490
20500
20510
20520
20530
o’54@
20550
205460
R0570
22580
20570
0600
20610
ROLZ0
00630
PR64D
PB650
20660
20670
2480
20690
o700
00710
0720
0e730
20740
V2750
2760

ORG $3F00
E2 L2232 SRS 2SS SRS TS SRS SRS LT R SRS NT)
* X4 ZOOM OF PAGE @ IN PMODE 4 *
* ENTRY: (D)=QUADRANTsy @-3 *
* EXIT: SCREEN MAGNIFIED *
22222 2SS ST S TR E RS SIS RIS TSR T T NTS
S3GUAD EQU I2x96+146+$600
S@RUAD EQU $600
ENDLOC E®U $620+6144
ZO0OM EQU »
JER $P.3ED GET QUADRANT
ANDPE. #3 DON’T TRUST CALLER'
L.DA 8 GTAE ENTRY S1ZE
MUL DISP TO GTAE ENTRY
ADDD HOTAR POINT TO QTAE ENTRY
TFR DyU POINTER NOW IN U
LDX sU SOURCE ADDRESS
LDY #53QUAD DESTINATION ADDRESS
* MOVE QUADRANT TO GUADRANT 3 FOR SIMPLICITY
ZOMA1@ LDA y X+ GET BYTE
STA s Y+ STORE
TFR YsD DEST POINTER
ANDE: #$F TEST 4 L5 RITS
eNE ZOMD10o GO IF NOT AT 16TH
CMPY #ENDL.OC TEST END
BEG Z0MoE0 GO IF RELOCATED
LEAX +1b6s X POINT TO NXT ROW SRCE
LEAY +16,Y POINT TO NXT ROW DEST
ERA Z0M210 DO FOR 26 ROWS
* NOW "X4" FROM QUADRANT 3
20MBZ® LDX #530UAD START OF QUAD 3
DY #SOQUAD START OF QuUAD @
ZOMQ3D BSR STRIPE 1-4 BIT CONVs 8 TIMES
TFR XsD SOURCE PNTR
ANDE #$F TEST 4 .8 RITS
ENE Z0MR30 GO IF NOT AT 16TH
CMPX #ENDLOC TEST END
BEQ ZOMD92 GO IF DONE
LEAX +163 X POINT TO NEXT SOURCE ROW
LEAY +32.Y POINT TO NEXT DEST ROW
BRA Z0MR30D CONT INUVE
ZOM@9@ RTS RETURN
OTAR FDP SORUAD QUAD @
FDB 16+$600 QUAD 1
FDE 3ZX9H+$600 QUAD
FDB S3RUAD QUAD 3
2222 22 2SS RS2 SRS S22 S 2SI LSSSELSSEEL R S S
* CONVERT 1 BIT TO 4 BITSs 8 TIMES *
* ENTRY: X=:>S0URCE *
* Y=>DESTINATION, UPPER LEFT CORNER *
* EXIT: 32 RITS UPDATED *
EZ I TSRS SIS LSS S S S S S LSS S SRR E RS S S R S n
STRIPE LDE 48 LOOP COUNT
CLR Y CI.LEAR NEW
CLR +isY
CILR +325Y
CLR +33.Y
L.DA s X GET SOURCE BYTE
STROZ® LSRA SHIFT QUT BIT
BCccC STRO30Q GO IF @ BIT
INC +12Y SET UPPER ROW Z BITS
INC +1sY
INC +1sY
INC +33,Y SET LOWER ROW & BITS
INC +335Y
INC +33sY
STRA3® tLEAU 'Y UPPER ROW ADDRESS

Figure 24-7. ZOOM Program

239

24 Assembly Language Graphics

IF72 34 oz o770 PSHS A SAVE SOURCE BYTE
3F74 8D oF 20780 BSR SHIFT RIGHT ROTATE
3F76 33 AB 20 0a790 LEAU +322Y LOWER ROW ADDRESS
3F79 8D oA 20820 BSR SHIFT RIGHT ROTATE
3F78 35 oz o810 PULS A RETRIEVE SOURCE BYTE
3F7D SA 28820 DECP DECREMENT COUNT
3F7E 26 DE 2830 BNE STRO:Q GO IF NOT 8
3F80 3@ 1 22840 LEAX +14X BUMP SOURCE
3F8z 31 2z 2850 LEAY +24Y BUMP DESTINATION
3F84 39 o860 RTS RETURN
DBOOTD 3315333339933 KW 369300 0636903363696 K336 3
22880 * RIGHT ROTATE 14 RITS POINTED TO BY U *
DDEGFD 35536 535 53 336 3 3903 35 5 10K I3 00369636006 K099 0636 33696 %
3FB5S A& C4 20900 SHIFT LDA’ sU GET MS BYTE
3F87 44 V0710 LSRA GET L5 BIT IN C
3F8R && 41 [ralraed] ROR +1sU ROTATE TO LS BYTE
3F8BA b6 C4 V0?30 ROR s U ROTATE MS BYTE
3FBC &6 41 2240 ROR +14.U ROTATE LS BYTE
3FBE 66 C4 B950 ROR s U ROTATE MS RPYTE
3F90 39 oL@ RTS REF TURN
[ra[alvalva] w970 END

Q0P TOTAL ERRORS

ENDLOC 1EQ0
OTAR 3F48
S@QUAD Q602
S30UAD 1310
SHIFT 3F895
STROZB 3F5E
STRO3® 3F70
STRIPE 3F50
ZoMe1e 3F13
I0MRZQ 3FZB

IO0MB3D 33z
Z0MB9@ 3F47
ZOOM 3F00

Figure 24-7 continued

The SHIFT Subroutine
The SHIFT subroutine does two right rotates on 16 bits of graphics memory.
This is two adjacent bytes.

The subroutine is entered with the U register pointing to the most signifi-
cant byte to be shifted. This byte is loaded into A and shifted left by the
LSRA, setting the Carry toa 1 or 0. This is a "dummy” shift, done only to set
the Carry.

The following ROR rotates the two bytes at O,U and +1,U to the right. Data
shifted out of the least significant byte is shifted back into bit 7 of the most
significant byte by the ROR +1,U.

The STRIPB Subroutine

This subroutine takes one byte from the source row of quadrant 3 and
generates 64 bits on the full-sized screen. In doing so, it goes through 8
“iterations, one for each bit of the source byte.

The subroutine is entered with the X register pointing to the source byte
in quadrant 3 and with Y pointing to the "destination” byte on the full-size
screen.

First, B is loaded with 8, to count the 8 iterations. Next, the four bytes on the
240

Assembly Language Graphics 24

full-sized screen are cleared. If the source byte contains all zeroes, the
operation is done, but there will probably be 1 or more 1" bits in the source
byte. The CLR is done to,Y (the 8 upper-left elements), +1,Y (the 8 upper-
right element), +32,Y (the 8 lower-left elements), and +33,Y (the 8 lower-
right elements).

The source byte is now loaded into A.

STRO020 through the remainder of the subroutine is an 8-iteration loop. Each
time through the loop, the following actions occur:

® A bit is shifted right out of A into the Carry.

e If thisbitisa 1 (CS),a "11" is loaded into the two least significant bits of
each destination row. These bits will be right rotated 8 times.

e AtSTRO30, U is loaded with the upper row address from Y and SHIFT is
called to rotate the upper row. SHIFT is called again to rotate the lower
row (U=+32)Y).

® The A register was saved in the S stack before the BSRs and is restored by
the PULS A.

® The count in B is then decremented. If not 8 iterations, another pass is
made.

® After the 8th iteration, the source pointer in X is incremented by one (8
source row bits have been processed), and the destination pointer is
incremented by 2 (16 destination row bits have been processed).

Main Line Code
The "main line” code is at ZOOM.

We've used three EQUates to preset three values. S3QUAD is the location of
the third quadrant starting byte. SOQUAD is the location of the first quadrant
starting byte. ENDLOC is one more than the last byte location in the
graphics screen.

ZOOM first calls the $B3ED ROM subroutine to get the quadrant number.
This is returned in D. The B register is then ANDed with 3 to get a number of
0-3 (not that we don't trust the caller).

The result of 0-3 is then MULtiplied by 2 to yield O through 6. This “index
value” is then added to "QTAB the starting address of a 4-entry table that
defines the starting byte address for each of the 4 quadrants.

D now points to one of the 4 starting addresses in QTAB. The contents of D
is transferred to U, and U is used to load the starting address into the X
register. Y is loaded with the starting address of quadrant 3.

The ZOMO10 loop moves quadrant O through 3 into quadrant 3. Note that
quadrant 3 may be moved into quadrant 3, resulting in no change to the
screen. In the loop, X points to the source (original quadrant) and Y points to

241

24 Assembly Language Graphics

the destination (quadrant 3). Auto increment is used on both. A check is
made for the end of each row by ANDing the Y pointer value with $F. The
result will only be 0000 at the end of each row. The end of quadrant 3 is
reached at the end of the transfer when Y contains the ENDLOC value.

At ZOMO020, the original quadrant is now in quadrant 3. The data in quadrant
3 will now be transferred one row at a time to the full-sized screen. During
the loop of 96 iterations, X contains the pointer to the next byte of quadrant
3, and Y contains the pointer to the upper-left byte of the 4-byte full-sized
destination. Each byte of the quadrant 3 data is used in STRIPB. An end of
row check of X is made by ANDB #$F. At the end of each quadrant 3 row, X is
incremented by 16 to bypass the quadrant 2 portion of the row, and Y is
incremented by 32 to bypass the next destination row, which has already
been filled with data. The full size data storage proceeds two rows at a time
for every row of the quadrant 3 data.

Hints and Kinks 24-2
Changing ZOOM to Four-Color Operation
To change ZOOM to 4-color operation, change STRIPB to look at
four sets of 2 bits (4 iterations). Don't CLR the 32 bits of the
destination beforehand, but write out the 2-bit pattern four times.
You can still use SHIFT as is, and the main-line code in ZOOM
should also be intact. (I know, if it was so easy, why didn’tIdoit. . .)

Hints and Kinks 24-3
The INCs in ZOOM

The three INC +1,Y and three INC +33)Y instructions effectively set
three bits in either the upper or lower row. Don't forget that the four
bytes in the full-sized screen were cleared initially. Incrementing
three times is the same as ANDing in a binary 11, in this case. We
can’t do an AND to a memory byte.

Using ZOOM

The best way to use ZOOM is to assemble onto cassette tape without using
the “/IM" option (use /AO, however, for the ORG). After doing a CLEAR
200,&H3EFF in BASIC, load the ZOOM object with the CLOADM command
in BASIC. Don’t do an EXEC, of course.

To call ZOOM, do a

DEFUSRO=&H3F00
A=USRO(N)

where N is the quadrant number of 0 through 3. The DEFUSRO needs to be
242

Assembly Language Graphics 24

done only once, but the USRO call can be done anytime a magnification of a
quadrant is required.

Hints and Kinks 24-4
ZOOM Aesthetics

Although the transfer of the original quadrant to quadrant 3 doesn’t
take long, it doesn't look “clean!” Consider copying the current
screen to the remaining 4 pages and doing the operation "off line™;
you'll have to change the $600 references to $1E00 to work with
pages 5 through 8.

Review
To review this chapter:
® The text screen starts at $400 and the graphics pages at $600

® The text screen has 512 character positions which may be an alphanumeric
character or a graphics character

® Mapping for the text screen is done one byte per character position; the
msb of each byte determines alphanumeric or graphics character

e Graphics mode permits 2- or 4-color graphics displays of up to 256- by
192-element resolution

® Mapping for the graphics pages is done on a bit-by-bit basis for 2-color
mode, or two bits per element for the 4-color mode

For Further Study

"Color Computer Graphics’ (if you'd just buy the blasted book, I'd stop
touting it...)

243

KEY CHART — CHAPTER 25

INSTRUCTIONS EDTASM+ EDITOR COMMANDS
ABX TBHS- CtRE—tPS— ROt ATSSEMBLEr TRSERT— RIEPLACES

ADTA- BITA TR~ O -RORA- €rOPYH A ~FHARBEOPY—
APER BB~ -EMPA DX RORB BT AAHOVE) PR
ADDA~ B -CMPB— +BY- —ROR £ —NHAABER) WHARHFE—
APEE tBtE EMPE— tFAS —RFF —FHAND A SR

TANDEE- (BES EMPY SR SEX oassoruTEoORMGIN— R FOOBAEET

AStA- BEF €OMA ESEB 5FA- e OOV DO TAE
ASLB- tBT €OMS St SFe- L T O T MR A
ASL- TBMr TCOM TSAR TSTET mto-mANUATORIGIN- WEWATT-ON-ERROF

ASR —BNE BEGA S
BEE— BPt BEER NFGA ST EDTASM+ ZBUG COMMANDS
+BEE +BPr PFE- NFER <SHBA AISCHDISPEAY— ~FBISPLAYBHOEK—
BES— BRA- FORA NEG SUBR BrYFEMOBF —FHHARBGCORY—BHO
+BES- +BRA- —FORB NOFR SuBp T CrOoNTINUE— Y MOVE—BHOCH—
—BFG BRN X6 —ORA —SW— TDHISPEAYY— —YAERHYFBLOGK—
+BEQ +BRN HNCA- ORB~ Syp TEIDTTFOR— WORDMOBE—
BE— -BSR +NER- OREE -SWH3- O HX—BREAKPOHNTF
+BEE +BSA NG RSHS -SYNE TFHAERSYMBOHG YAAMG—BREAKPON
BEF e —SAP —RGHHF FFR —HAHHTFH—BASE— 4+ EXAMINE-RPRECED)
+B86F +B¥e +5R- —PHS- FSFA- oA MEFHE— —+—FEXAMNENETF—
BHH— —BYS A P —FSF MINEMONCTMODE— —BRANCHHNPHRECF
+BH +BYS +BB— —ROLA —FSF NTUMERICIMODE— —FORCENUMERIC—
BHS E+H-RA +BB- RO —OHOHFRHFBASE ——FOREENHAERIEH
P-SAVEM—ON—TFAPE ——FORCFFARS—
. —RIEFGISTFERTDISPLAY FEXARNE—
ADDRESSING MODES
HNHERENF SHMBOHEDISPEAYT— —EINGEESFER—
-BHRECTF
—EXTENDED GENERAL TOPICS
AL DHAFF—— CPU REGISTERS CSUBROUTINES™
SHAPE—HPDEXES— —BAFA—FO—REHSFERS STACK~OPERATHOMNS-
RELATIVE TOADING ANDSTORING —ROTFATES—SHIFFS-
BHERLA G EAENTF—-NBX=D— ADDITION AND SUBTRACTION—MULTFPHES—
ALTQ INCREMENT/DECREMENT CONDITIONCODES BHHEES—
HHREET SYMBOtTCADDRESSING BECHAL—ARFFHIEFE
SOPHISTICATED TIMPSBRANCHES BASHC—INFERFACHNG—
RECATH E BRANCHES— ~PASSHIG—PARAMEFER
NERFMENTFSDECREMENTS — VARPFRUSE—
PSEUDO OPS COMPTEMENTS— —ROMSUBROUTINES—
£Q GRE FOGHEAT—OPFRATHONS- OFHERADBRESSHG-
£C8— -BME—— MUtFHPHFPRECISION— GRAPHICS—
66— SEF—
+B8— SEFDR- DATA—VALUES™ SOUND
DX LARGER PROGRAMS
INODEXING—WHTFH—Xr—
SORFING—

Bold Type Present Chapter
Regular Type Future Chapters
Ualic-Type - Past Chapters

244

Chapter 25
Assembly-Language Sound

In this chaprer we'll look at the mysteries of generating sound in the Color
Computer. Sound must be generated by assembly-language programming,
whether that programming is in the BASIC interpreter or in your own
program. Even though BASIC has quite a powerful sound and music capabil-
ity, there’s a lot more that can be done via assembly language.

How Sound is Generated

The Digital-to-Analog Converter
A Digital-to-Analog Converter is a device for converting digital values found
in a computer to “analog” voltage levels.

A digital voltage level is either a one or a zero, an on or an off, and that
translates into voltage levels of about +5 volts or 0 volts in the Color
Computer and many other microcomputers, a little less than the voltage level
of a lantern battery.

Ananalog voltage level, however, can be any value between the) volts and +5
volts — 3.5, 4.7, 2.3 volts, or other values.

The Color Computer has a built-in digital-to-analog converter, shown in
Figure 25-1. We'll call it a "DAC” for short.

6

ANALOG
DIGITAL VOLTAGE
VOLTAGE TO 0TO +5v
LEVELS CASSETTE IN SMALL
(8 OR +5V) I STEPS
2 DIGITAL b SELECTOR
3 TO ADDRESS
ANALOG — $FFo1,
PIA 4 CONVERTER $FFe3
ADDRESS (DAC)]
$FF20 5
6
7
'
TO
TV
AUDIO

Figure 25-1. Color Computer Digital-to-Analog Convertor

The DAC takes a 6-bit value and converts it to a voltage level of 0 through
about +5 volts. The higher the 6-bit value, the greater the voltage will be. A
digital value of 6 bits can hold 64 discrete levels, 000000 through 111111, so
the “step” between levels is about 5 /64 volts, or approximately 0.08 volts. A

245

2 5 Assembly Language Sound

digital value of 000001 will generate 0.08 volts, a value of 000010, 0.15 volts, a
value of 100000, 2.5 volts, and so forth. The conversion steps are shown in
Figure 25-2.

TO
111111

001001
001000
000111
000110
000101
000100
000011
000010
000001
000000

+0.1 0.2 0.3 04 0.5 0.6 0.7—TO +5 VOLTS

DAC VOLTAGE OUTPUT
(VOLTS)

Figure 25-2. DAC Conversion Steps

The DAC is connected to a device called a “PIA;" for Peripheral Interface
Adapter. This is a semiconductor chip that contains several sets of “output
lines.” The address of the PIA for the DAC is $FF20, and it is addressed just
like any memory location. Once a value is written to this PIA, it remains in
the PIA and appears on the output lines as digital voltages of +5 or 0 volts,
ones or zeroes. To store a new value in the PIA, another write is done. The
writes are Store instructions, just as you would store data in memory.

The output lines of the PIA are connected to the DAC. The DAC takes the 6
PIA outputs and converts them to an analog voltage, which appears at the
DAC output as a single line, just as you'd have a single line for an audio
amplifier speaker connection (really two wires, but one is “ground™).

The DAC output is routed to another device which selects one of three inputs
and routes it to the audio portion of your television receiver. The output of
the DAC is also routed to the cassette tape output.

Hints and Kinks 25-1
The ADC

The Color Computer also has an analog-to-digital converter, an
“ADC"” which performs the reverse function of a DAC. It converts
an analog voltage into a 6-bit digital value from 0 through 63. The

246

Assembly Language Sound 2 5

ADC is used primarily in the joystick input conversion. The joystick
position is converted to a resistance value by the joystick “pot,’
which produces a voltage value from +0 to +5 volts. This voltage is
then converted to a digital value of 000000 through 111111 for both
the x and y axes. The ADC conversion is done primarily in "software”’

Generating a Sine Wave

A pure sine wave looks like Figure 25-3. We've all heard them as test tones on
television or fm stations. The DAC circuitry can be used to generate a
reasonable facsimile of a sine wave. As a matter of fact, this is exactly what is
done to write data on cassette tape for BASIC, EDTASM+, and other
programs — a sine wave is "synthesized” by the DAC from digital values.
Here's how it works:

W- ———————— +1 (+5 VOLTS)
L — _____&_/__ — -1(BVOLTS)

ONE CYCLE OF A “SINE
WAVE” SHOWN — A PURE
MUSICAL TONE

Figure 25-3. Sine Wave

® A sine wave table is constructed in memory. The sine wave table in BASIC
is at location $A85C (this location may change in subsequent ROM
versions) and consists of 36 digital values as shown in Figure 25-4.

60
55
50
45
40
35
30
25
20
15
10

o -
02 4 6 8 10 12 1416 18 20 22 24 26 28 30 32 34
Figure 25-4. DAC Sine Wave Generation

247

2 5 Assembly Language Sound

Hints and Kinks 25-2
Sine Wave Generation

As you can see from the figure, the sine wave is actually a "stepped
wave” consisting of small increments or steps. It's good enough for
cassette recording purposes. Any DAC will create a wave of this
type; the more bits, the finer the step will be.

® The table values are written to PIA location $FF20, one at a time.

® After each value is written, a time delay occurs. The length of this time
delay determines the “frequency” of the tone.

® The next value of the table is accessed and written. If the end of the sine
wave table is reached, the table pointer is reset to the beginning.

® A preset number of “cycles” of the tuble is written out over the duration of
the tone.

The output frequencies used for cassette are 1200 and 2400 hertz, or cycles
per second. Each "cycle” of the sine wave produced will be 0.00083
or 0.000416 seconds long, and in that time we can execute several hundreds of
6809 instructions, making the process an easy task for assembly-language
code.

Generating Other Sounds
The sine wave is a "pure” sound. Other sounds are much more complex,
containing many different frequency components, as shown in Figure 25-5.

ANETAY
y

Figure 25-5. Complex Sounds

[t’s easy to generate any "repeatable” sound by using the “table” approach to
generate a continuous number of cycles of the sound, just as is done in the sine
wave case. Here's a short program that will generate a burst of sound over n
cycles.

248

Assembly Language Sound 2 5

3FB7 08100 ORG $3FQ7
D1 1D 3935 33 3 3 5 3 3 3 3 3 3 33629 36969 2696 3362 936369696 36 3 936 3963 9 36 396 9 06 1 % % %%
Q0120 * SOUND GENERATOR FROM MEMORY *
DB 13D 555333 K330 6936369303636 36 3 9696369696 96 36 36 06 9636 96 96 36 36 06 96 36 306 3 3 3606 26 2 X %
3FB7 Bb6 FF@1 P0148 SOUND LDA $FFO1 SELECT SOUND OUT
3FOA 84 F7 20150 ANDA #EF7 RESET MUX BIT
3FeC B7 FF@1 20160 STA $FFO1 STORE
3FOF B& FF@3 22170 L.DA $FFO3 SELECT SOUND QUT
3F12 84 F7 0182 ANDA #H$F7 RESET MUX RIT
3F14 B7 FF@3 201290 STA $FFA3 STORE
3F17 Bé6 FFz3 20200 LDA $FFZ3 GET PIA
3F1A BA a8 00210 ORA #8 GET 6—BIT SOUND ENABLE
3F1C B7 FF23 ozze STA $FF23 STORE
3F1F 10BE 3FQ0 @az30 LDY $3F0Q GET # OF TIMES
3F23 BE 3F23 BO240 SNDD1O® LDX $3F03 GET START ADDRESS
IF26 Ab 86 00250 SNDOZ@ LDA s X+ GET NEXT BYTE
3F28 84 FC 20260 ANDA #$FC RESET Z LS RITS
3FzA B7 FF20 00270 STA $FF20 QUTPUT
3FzZD 8D BA 20280 BSR DELAY DELAY
3F2F BC 3F@5 20250 CMPX $3FB5 TEST FOR END
3F32 26 Fz 22300 BNE SNDOZO GO IF NOT END
3F34 31 3F 00310 LEAY —1sY DECREMENT # OF TIMES
3F36 26 ER o038 BNE SND21@ GO IF NOT 2
3F38 39 20330 RTS RETURN - DONE
3F39 B6 3Foz 20340 DELAY LDA $3F0Z GET DELAY COUNT
3F3C 4A Q0350 DEL@1@ DECA COUNT-1
3F3D 26 FD 203460 ENE DEL®1@ GO IF NOT @
3F3F 39 20370 RTS RETURN
o000 20380 END

20000 TOTAL ERRORS

DEL®1® 3F3C
DELAY 3F39

SND@1@ 3F23
SND@28 3Fz26
SOUND 3F27

Figure 25-6. SOUND Program

The SOUND program uses four parameters from the $3F00 area, as shown
in Figure 25-7. The pattern for the sound is taken from a table defined by the
start address at $3F03,4, and an end address defined by the contents of
$3F05,6. The delay between outputs to the DAC is defined by the contents of
$3F02. This is a value of $01 through $FF or $00; longer delays cause lower
sounds; a value of $00 will be the longest delay. The contents of $3F00,1 is a
“repeat count.” This is a count of $0001 through $FFFF or $0000 which
defines the number of times the pattern will be repeated ($0000 is a repeat

count of 65,536).

$3F00 3 REPEAT L s0000-$FFFF
1 COUNT
2 DELAY COUNT $00-SFF
3 L STARTY J4- (ANY ROM, RAM ADDRESS)
R ADDRESS
5 | END 1. (ANY ROM, RAM ADDRESS)
6 ADDRESS

Figure 25-7. SOUND Parameter Block

249

2 5 Assembly Language Sound

Here's how the SOUND program works:

The DAC output is first routed to the television audio by resetting bit 3 of
address $FF01 and bit 3 of address $FF03. These addresses are "PIA”
addresses that control the routing of the sound to the tv audio.

Next, bit 3 of address $FF23 is set. Again, this is a PIA address that among
other things, controls the "6-bit sound enable” by bit 3. Setting bit 3 turns on
the DAC sound.

The main program itself consists of two loops, one nested inside the other.
Let's look at the innermost loop first, from SNDO020 through the BNE
SNID020.

This loop loads the next byte from the table in memory, using X as a pointer.
The two least significant bits of the value are then reset by an AND #$FC.
The lower two bits of the P1A are used for other functions (cassette and serial
I/O) and this operation stores zeroes in the two least significant bits.

The value is then stored in PIA $FF20 by the STA $FF20 instruction, causing
an almost instantaneous DAC output.

The DELAY subroutine is then called. DELAY gets the delay count from
location $3F02 and decrements it until it reaches 0.

After the delay, the X register is compared to the end address in $3F05. If the
end address has not been reached, another value is picked up from the table
by looping back to SNID020.

This inner loop outputs the entire table from beginning to end with the delay
between values from $3F02.

The outer loop starts at SND010 and continues through the BNE SNDO10.
[t decrements the “repeat count” in Y, looping back to another cycle of the
inner loop if the repeat count is not zero.

X is initialized with the starting address and Y with the repeat count at the
beginning of the program.

A BASIC program containing the SOUND program as embedded DATA
values is shown below. It relocates the code for SOUND to the $3F07 area.
All instructions in SOUND are position independent (relocatable) so that it
can be moved anywhere in memory, as long as the variable area at $3F00
through $3F06 is maintained.

250

100
101
112
120
130
140
150
160
178
180
190
200
210
220
238
240
250
260

Assembly Language Sound 2 5

> BASIC DRIVER FOR SOUND

CLLEAR 200, &H3EFF

DATA 1BZs 2559131329247 18397554 15182920543

DATA 132,247+183:25553,182,255,355138,8,183

DATA 25535354161 190+63101 190563535 16651285 13252525183
DATA 255+32+14151011883563:53385242+49263,38,235,57
DATA 182:63+2374538+253:57

FOR [=&H3F@7 TO &H3FO7+56

READ At POKE I:A

NEXT I

DEFUSRO=&H3F @7

INPUT "#TIMES, DELAYsST»END"NsDsSHE

POKE &H3FOO, INT(N/256): POKE &H3FD1sN- INT(N/2Z56) %256
POKE &H3FQZsD

POKE &H3FD3s INT(S/256) 1 POKE &H3F@49S—INT(S/256)*20b
POKE &H3F@5s INT(E/296) i POKE &H3F@B6sE~-INT(E/Z296) %256
A=USRA(B)

GOTO @0

Figure 25-8. BASIC SOUND Driver Program

This is a fun program to run! You might try the sine wave table at $A85C
first, to see how the program works. Try any other tables in memory, ROM or
RAM, with different delays and repeat counts. You can generate almost an
unlimited number of interesting sounds including phasor blasts, whistles,
explosions, and crashes.

Hints and Kinks 25-3
Game Sounds

After running this program, it's easy to see where some of those
arcade game sounds come from — from instructions and data in
ROM memory! Just choose a suitable sounding set of instructions.
You never thought you'd be able to hear your assembly-language
code, did you?

A Music Synthesizer

The SOUND program above is one approach to generating sounds. Another
approach is shown in Figure 25-9. This is a “music synthesizer” implemented
in software.

251

2 5 Assembly Language Sound

3F 00 o100 ORG +3F 0@
DOL1D HERRHHERERRTKEEERERSE RN EREHEEEN RN EN, RN EN R
20122 * MUSIC SYNTHESIZER

*
PB3130 * ENTRY: ($3FF@)=FREG DELAY COUNT ¥
2R140 * ($3FF 14, 2)=ENVELOPE TABRLE ADDRESS ¥
20150 * ($3FF 3y 4)=ENVELLOPE DELAY COUNT *
00160 * ($3FF5)=VOLUMEs 1 TO 255 *
B rd S R R S R R T Ty T R R R S

IFOR B6 FFO1 20182 MUSSYN LDA $FFQ1 SELECT SOUND OuT

3FO3 84 F7 0190 ANDA HEF7 RESET MUX RIT

3FP5 B7 FFD1 al'adeet STA $FF21 STORE

3F08 P6 FF@Q3 20210 LDA $FFO3 SELECT SOUND OUT

JFeR B84 F7 20220 ANDA #EF7 RESET MUX B17

3F@D B7 FF@O3 oRz30 5TA SFFO3 STORE

3F1@ R6 FFz3 PG40 LDA $FF3 GET PIA

JF13 8A @8 20:50 ORA #8 SET 6-BIT SOUND ENABLE

3F15 R7 FFZ3 BDz6D STA $FF23 STORE

JF18 CE 3FF@ PO:z70 LDU #$3FF@ POINT TO RLOCK

3F 1B AE 41 20280 LDX +1sU GET ENVELOPE ADDRESS

3JF1D BF JF69 P0z90 STX ENVPTR STORE IN PNTR

3FZB AE 43 00320 LDX +3.U GET ENV DELAY

9F 3F69 00310 MUS@RasS LDa FENVPTR+~ GE1 VALUE

3Fzb =7 40 20322 BEQ MUSQY@R IF @+ DONE

3F28 E6 45 20330 LDE +3,U GET VOLUME

3FZA 3D O340 MUL FIND VALUE

JFZE 84 FC 20350 ANDA #$FC RESET RS~ C

3FzD B7 FFz@ 20360 STA $FF20 SET ON

3F30 E6 C4 20370 L.DR s U GET FRE& DELAY COUNT

3F3z 30 1F 20382 MUSDILD LEAX 1a X DECRE ENV COUNT

JF34 26 ac R3990 BNE MUSQA:z@ GO IF NOT @

3F3¢ 10BE 3F69 20400 LDY ENVPTR GET ENV PNTR

3F3A 31 21 20410 LEAY 1sY NEXT SEGMENT

3F3C 10BF 3F6&9 P40 STY ENVPTR STORE

3F40 AE 43 20430 LDX +35U GET ENVEL DELAY

3F42 5A Q@440 MUS@ZB DECPR DECREMENT F COUNT

3F43 26 ED Q0450 BENE MUS@1@ GO IF NOT @

3F45 A6 9F 3F69 B0460 LDA AENVFPTR+ DUMMY

3F49 21 20 2a470 EBRN *+2 DUMMY

3F4B Eb 45 248G LDE +5sU DUMMY

3F4D 3D 20490 MUL DUMMY

3F4E 7F FFZ0 20500 CLR $FFZ@ SET OFF

3F51 E6 C4 20510 Lpe »U GET FRE® DELAY

3F53 30 1F 20520 MUS@3@ LEAX —1aX DECRE ENV COUNT

3F35 26 ac 20530 BNE MUS040 GO IF NOT @

3F57 1BBE 3F69 20540 LDY ENVPTR GET ENV PNTR

3JrFse 31 21 20550 LEAY Iy NEXT SEGMENT

3FSD 1@BF 3F49 00560 STY ENVPTR STORE

3F61 AE 43 2a570 LDX +35U GET ENVEL DELAY

3F&63 SA 20580 MUSA4® DECB DECREMENT F COUNT

3Fb64 26 ED 2590 BNE MUS@30 GO IF NOT @

3F b6 2@ BA o620 BRA MUS@25 LOOP

3JF68 39 20610 MUSR9® RIS RETURN

3K 69 [l lral] PR6Z20 ENVPTR FDER @ POINTS TO ENVELOPE TABLE

Q020 0630 END

200Dd TOTAL ERRORS

ENVPTR 3F69
MUSD@S 3F2Z
MUS@1@a 3F3z2
MUS@Z@ 3F4Z
MUSQ3@ 3F53
MUSB4@ 3F63
MUSQ9@ 3F 68
MUSSYN 3F0D

Figure 25-9. MUSSYN Program

252

Assembly Language Sound 2 5

Hardware music synthesizers generate a sine wave, square wave, or triangu-
lar wave or other waveshape which is then “modulated” by a second wave-
shape, and “filtered” to remove a certain portion of high frequencies (see
Figure 25-10). Various other characteristics of the sound output can be
changed to produce electronic music.

COMPOSITE
SIGNAL
OSCILLATOR
1 M Mixer M FILTER |—» TO
(HIGH FREQ- SPEAKER
UENCY)
[}
OSCILLATOR /\J
2
(LOW FREQ-
UENCY)

Figure 25-10. Hardware Music Synthesizers

This software approach to a synthesizer doesn't give you the flexability of a
hardware synthesizer, but it does produce some very unique sounds, and you
can easily modify the characteristics and volume of the sounds to create
vibrato, bell tones, and other sounds that defy description.

The heart of MUSSYN is a square-wave generator. It produces a square wave
with a programmable frequency. We've used a square wave because it’s easy
to generate, but also because it’s an interesting sound. There are a lot of “odd
harmonics” in a square wave, which makes for a “thick” sound, similar to a lot
of hardware synthesizer output.

This basic square-wave frequency is modified by two parameters, a “volume”
parameter which controls the intensity of the sound, and an “envelope”
table, which controls the intensity of the sound over time, as shown in Figure
25-11.

253

2 5 Assembly Language Sound

VOLUME
PARAMETER

SQUARE-WAVE SOFTWARE
OSCILLATOR “MIXER"

\

ENVELOPE
TABLE

Figure 25-11. MUSSYN Parameters
Let’s look at how the program operates.

Parameters
The program is "driven” by 4 parameters contained in a parameter block at
location $3FF0 (see Figure 25-12).

$3FF0 FREQUENCY DELAY CNT 1-255 (@ 256)
L ENVELOPE 1 POINTS TO WAVE-
2 TABLE ADDRESS SHAPE TABLE
3 i ENVELOPE i 1-65535 (B 65536)
4 DELAY COUNT
1-255 (@ NOT ALLOWED
5 VOLUME UNLESS YOU HATE MUSIC)

Figure 25-12. MUSSYN Parameter Block

The first parameter is a frequency delay count, which determines the
frequency of the square wave by adjusting the time delay between outputs to

the DAC.

The second parameter is the address of an "envelope table!” This table is a
table of 8-bit values from 1 to 255 which determine the magnitude of the
DAC output. The delay between new envelope values is determined by the
envelope delay count found in the third parameter. The envelope table and
delay count determine the waveshape of the tone and create the timbre of the
sound — whether it sounds like a bell, harpsichord, etc.

254

Assembly Language Sound 2 5

The fourth parameter is the volume. This value is multiplied times the
envelope values to reduce the overall volume of the sound, but to keep the
same shape.

Program Operation
First of all, the DAC sound output is routed to the tv audio as before, by
outputting to the PIAs at locations $FF01, $FF03, and $FF23.

The U register is now loaded with the address of the parameter block. U will
maintain this address throughout the subroutine.

The envelope address is now stored in location "ENVPTR! Variable
ENVPTR will be incremented periodically, based on the envelope delay
value, to point to the next byte of the envelope. A byte of 0 terminates the
envelope and causes an RTS to the calling program.

Next, the envelope delay is put into the X register. X will hold this delay
throughout the subroutine, and it will be decremented down to 0 for each
envelope value.

The main loop is at MUS005 and continues through one instruction before
the MUSO090 label. The loop continues for each envelope value and termi-
nates when an envelope value of 0 is reached. Each time through the loop, the
following actions occur:

e (MUS005): The ENVPTR value is obtained by an indirect load of
ENVPTR. If this value is 0, an RTS is done.

e This value is multiplied by the volume value (+5,U). The high-order result
in A is ANDed with $FC to reset the 2 lower bits, as they are not DACbits.

e The value is output to the PIA at $FF20, “turning on” the top of the square
wave.

e The frequency delay count is put into the B register.

e (MUSO010): An inner loop from MUSO10 through MUS020 plus one
instruction decrements the delay count in B. At the same time it decre-
ments the envelope count in X. If the envelope count reaches zero, the
ENVPTR variable is incremented to point to the next table value,and X is
reinitialized with the envelope delay count. Note that the envelope and
frequency delay count are both adjusted independently.

e When the frequency count is decremented down to 0, the second loop at
MUS030 through MUS040 plus one instruction is executed. This loop
outputs a 0 to the PIA, zeroing the DAC output (CLR $FF20) and creating
the bottom edge of the square wave. It then delays as in the previous loop.
Dummy instructions are done to keep the "width” of the square wave
bottom approximately equal to the square wave top.

255

2 S Assembly Language Sound

Hints and Kinks 25-4
50% Duty Cycle Square Waves

A square wave with equal top and bottom widths is called “50% duty
cycle” There's really no reason to make the tops and bottoms the
same width. If you vary the duty cycle, you'll get yet another set of
sounds, although the effect won't be as dramatic as varying the wave
envelope.

® Throughout both loops, X is decremented down to 0. Every time it reaches
0, a new envelope table value is pointed to by ENVPTR. The envelope
delay is approximately constant for any frequency delay because the two
loops are continually active.

A BASIC Driver for MUSSYN

Figure 25-13 shows a BASIC driver for MUSSYN. This driver sets up
the parameter block at $3FF0, except for the envelope table address and
the frequency delay count. It then generates four sets of sounds, shown in
Figure 25-14.

100 °DRIVER FOR MUSSYN

110 DATA 125244+ 3614856Qy72+84y769 10851209132y 1445154
120 DATA 16811805 192:2045216+2284@

13@ DATA ZEB1216+120451925 1801685 15651445132, 120,108
140 DATA 6384372160481 36b124512490

15@ DATA 32yP635 16052405 240y 2402 240 240+ 16@5 128 764+ 805 6@
160 DATA 47:32:20116+8+8:0

170 DATA Z4@+21by19241764168y 16841764192 216> 24817016
180 DATA 192+176+:168+16811765192:s21469240,0

190 DEFUSR=&H3FO@

200 POKE &H3FF3,8:POKE &H3FF4,@

210 POKE &MH3FFS, 255

220 FOR E=B TO 3

230 PORE &H3FF1,&H3B+E

240 POKE &H3FFIZsQ

250 FOR L=&H3ROAQ+E*256 TO &H3BOD+E#I56+19

268 READ A:PORE Li1A

278 NEXT L

88 FOR F=10 TO 258 STEP 10

290 POKE &H3FF@YF

300 A=USRRA(D)

310 FOR I=@ TO 10@:NEXT I

320 NEXT F

330 NEXT E

Figure 25-13. BASIC MUSSYN Driver Program

256

Assembly Language Sound 2 5

ENVELOPE 5

ENVELOPE 4

Figure 25-14. Envelopes for MUSSYN

Be certain to protect memory by a CLEAR 200, &H3EFF before loading
the object of MUSSYN or running the BASIC driver.

The first sound is a rising intensity sound that sounds uniike any musical tone
you've heard. It's like a tape recording played backwards.

The second sound sounds like a bell that's rung but one that doesn’t stay
“ringing” for any period of time.

The third sound sounds vaguely like a wind instrument blown for short
bursts.

The fourth sound is a kind of vibrato sound on an electronic organ.

You can easily build your own envelope tables by entering values. Remember
to make the terminating entry a zero. Experiment especially with the fifth
waveshape shown in the figure above (unimplemented). This "ADSR”
(attack, decay, sustain, release) is characteristic of many musical instruments.
Also change the envelope delay count on an experimental basis.

Review
To recap this chapter:

257

2 5 Assembly Language Sound

The Color Computer has a built-in digital-to-analog converter (DAC) that
can be used in assembly-language routines

The DAC is operated by outputting 6-bit “left justified” values to location
$FF20, a PIA device, in addition to some preliminary routing

Sound can be generated by outputting a random table of values over
repetitive cycles

Sound can also be generated by outputting a square wave with "envelope”
to change the level

For Further Study

“Musical Applications of Microprocessors,” Hal Chamberlin, Hayden Book
Company, 1980

258

KEY CHART — CHAPTER 26

INSTRUCTIONS

EDTASM+ EDITOR COMMANDS

PEA— BHFA- —CrR— tPY RORA €rOPY) +rOAB— FHARBCEPY—
PEB- BHB CiPA +tBX RORB BrEEETFET HHOVE ~AHERHY—
oA —BHF— —CMPA tB¥ ROAR —HBHr — NIRRT WHRIHFE
BPE— tBtHE EMPP— +FAS —RF— FHADT PR ZBHE—
B Bto-
NOA— BO
WO BtS-
¥oCt- LBES EMtPYy tS8StA— SEX- A AR HFF—ORI O —“NG—N'G—GB#EGT—
A BT COMA TSEB TSTA i mEMORTASSEMBLY— NS NOSYMBOL—TFABLE-
$+8- -+tBtF —C€OMB St S5 PP RINTFER- S SHHORT-SCREEN—
8 BMt— €OM tSRA STD Lpro-manuaroORta- A TR RS —
BRA tBM- OWAr —tSRB ST L woiorone
BRE— —-BNE— BARA SR —SF5—
SR BN BEGA- MUt -S5F%
lee- B —BFEB NEFAA —SF— EDTASM+ ZBUG COMMANDS
BS— BRA- FORA NEG— Suss BIYTEMODE— FHAARDCOPYBLECK
BES- +HRA- FORG NOFP— SUBHB —CrONTHNHE MOV BEOEHK—
¥ BRN X6 ORA S TDTSPLAY) WA ERHY T BLOCHK—
BEG- +1BRAN- HNCA- -BRB- Swe TIOToR— WIORDTMODE—
B BSA NGB -BOR6C SwHa— Oro— H-BREAKPONF--
BGE —+BSR 6~ —PSHS SYNG- THALF SYMBOHE— HAANKG—BREAKPOHNT—
- By AP PSHF FFR —HNPHTFBASE— +—EXAHNEPRECEDING-
BGF— +BVE —JSA- RS FSFA- +HrOAD Mt ——EXAMINENEXT
e S +5A4 P+ FS¥B- “MHINEMONICTMODE —BRANGH INCHRECT—
Bt EBYS +BB —ROFA FSF— THOUMERICIMODE —FORCENUMERIC—
HS -GLAA 1PB- ROLB BrOHFPHFBASE— ~— FOREF UM ERIE Y FF—
—P—S AN AP — —FOREF—FEAGS—
~RIFOISTFER-DISPEAY N ARANE—
ADDRESSING MODES SIYMBOLIC FISPIAY— —SHNGEHESTFEP—
WHERENTF-
YRECT—
KFENDED GENERAL TOPICS
WA DA TE— CRU REGISTERS SUBROUTINES
MRLEANDEXED— DATA-TO REGISTERS- STACK QPERATIONS
E AT = !Q4Q(NG AND. SIQ;Q(MG DﬂTATI:Q' SHIFETS
ISPLACEMENTINDEXED— ADDITION AND SUBTRACTION MULTIPIES
YTOANCREMENTHHEC AN F— CONDITHON-GODES— DIVUDES
VHREGTF— SYIBOHCADDRESSING- DECHAAARITHMETLC
E= EF E FES ““MQS, BQQNQHES BASIC INTEREACING
RELATHVE BRANGHES—— _PASSING PARAMETERS
INCREMENTSDEGREMENTFS- VARPTIR LISE
PSEUDO OPS COMPLEMENTS ROM SUBROUTINES
eu— -ORG OGICAL OPERATIONS OTHER ADDRESSING—
g SEF-
DATA VALUES SQUND
p8— SELDR- HNDEXHNG— LARGER PROGRAMS
XN G H—X
SORTING -

old Type - Present Chapter
egular Type Future Chapters
#ic—Tywpe Past Chapters

259

260

Chapter 26
Writing Larger Assembly-Language
Programs

In this final chapter we'll give you some tips on how to write larger 6809
programs. The sample programs we've been using here are all short subrou-
tines, but, of course, its possible to write huge assembly-language programs
that can accomplish truly wonderful things. The procedure for writing larger
programs is fairly standard. We'll show you the steps involved here. The
procedure consists of 5 parts — design, flowcharting, coding, debugging, and
documentation.

Program Design

This is the first stage of any program, whether it is BASIC programming or
assembly-language programming. Program design for large programs in
many cases consists of writing the "design specification” for the program
before anything else is done.

The design spec is a detailed manual, outlining what the program will do, and
in general how the program will go about it. All screen formats, record
formats, menus, and commands are listed and detailed.

Of course, for small programs, you don't really need this design spec. If you
were implementing a bubble sort, for example, you know that the sort has to
put all of the data items of a table in sequence, and not too much more can be
said about it.

This design phase of a program is still critical, however, even though you
don’t write a design spec. You should spend some time thinking about the
general “dimensions” of your problem. In the case of a bubble sort, for
example, you might ask yourself how many entries will be sorted, what the
maximum number of entries are, whether the number of entries can be held
in 8 bits or 16, where the table will be located, how large the size of entries
will be, and so forth.

If you don’t give the problem some thought, you may find yourself in the
middle of a program that simply won't work because it can’t!

Program Flowcharting

The next step inany type of programming is flowcharting. We've used a few
flowcharts in these lessons, so you're somewhat familiar with the symbols.

For a recap, the symbols are shown in Figure 26-1.

261

2 6 Writing Larger Assembly Language Programs

PROCESSING i f,gr::
BOX
GET COUNT
EXIT
DECISION POINT
BOX
ON-PAGE
CONNECTOR
ASDXB
OFF-PAGE
DECIMAL SUBSOUTlNE CONNECTOR
70 ALL
BINARY

Figure 26-1. Flowcharting Symbols

The rectangular box is a “processing box.” Any type of general processing,
such as "LOAD NUM WITH 0, "GET NEXT CHARACTER; or "BUMP
POINTER BY 1" is put into the box to describe the processing action.

The diamond is a decision box. The decision box would be equated to
conditional jumps in assembly language. Two or more exit points might be
used from the decision box. You might have something like "A<<B?” with
one branch labeled “YES” and the other "NO." or you might have "MORE
ENTRIES?” with another set of "YES” and "NO” exits.

I've used the six-sided symbol for subroutine processing, although this is
not always standard. It’s customary to put the name of the subroutine on the
upper right of the box. The description within the subroutine box might be

something like "SCAN TABLE FOR LEAST ENTRY" or "CONVERT TO
BINARY”

The triangles are exit and entry points from a subroutine or other code.
Typical descriptive text would be "ENTER” or "ENTER FROM COM-
262

Writing Larger Assembly Language Programs 2 6

MAND INTERPRETER" in the entry points and "RETURN” or
"RETURN TO MAIN" in the exit points.

The circles are “on-page connectors.” They are usually labeled with alphabet-
ical letters. Two circles on each page with have the same designator, showing
how the program flows without having to draw confusing lines.

The spade-shaped symbols are “off-page connectors,” which connect a pro-
gram point to a continuing point on another page. The off-page connectors
are usually labeled with page numbers.

Typically labels on the left top of each flowchart symbol represent the label
that will be used in the assembly listing.

The above flowchart symbols are suggestions only, although the rectangle
and diamond are standard symbols.

Flowcharts usually flow down and to the right.

When flowcharts are done before a program is coded, it makes it very easy for
a programmer to see what is happening without having to wade through
dozens of instructions.

Hints and Kinks 26-1
Flowcharting Template

Radio Shack sells (at this time of writing) a programming flowchart
template, a plastic guide with shapes for standard flowcharting
symbols. If you do a lot of flowcharting, a template is a decided
advantage. If not available at Radio Shack by the time this book
appears, the template is commonly found elsewhere.

Do you need to flowchart? Not for simple programs. For programs that
involve dozens of instructions, a quick rough flowchart helps clarify what
you're going to do, however. For larger programs, flowcharts are a must.
They help you plan the code and provide an indication of how you did things
when you come back to the program six months later!

Some programmers use notes as an alternative to flowcharting. Use flow-
charts first for larger programs, and then find a technique that seems to work
for you.

If you are flowcharting your program, try to divide a large program up into
subroutines and other “modules;’ as much as possible, rather than having one
huge set of continuous code.

A module would in many cases be a subroutine with the entry conditions and
exit conditions very well defined, as we've done in some of the subroutines in
this text.

263

2 6 Writing Larger Assembly Language Programs

In other cases, a module would simply be a functional processing block that
performed a specific function, such as doing the "insert” function of a
word-processing program.

Program Coding

After some thought about program design and some flowcharting for larger
programs, you're ready to code. You may find that your flowcharts are
detailed enough so that you can just sit down and enter instructions directly
into the editor/assembler. Chances are, though, you'll have to code your
program first using paper and pencil.

Once you've coded the program on paper and given it a cursory check, you're
ready to enter it into the editor/assembler.

A few tips about program structure:
® Programs usually flow through from beginning to end.
® Try to utilize as many subroutines and modules as possible.

® Use labels for subroutine and module entry points that correspond to the
function — "RDCHAR” for "Read Character,’ for example. Labels after
this entry point may be defined by the first 3 letters of the function and
then 3 digits in ascending order. You might have the labels "RIDCO10,
“"RIDCO30." and "RIDCI00” as three labels in the RDCHAR subroutine, for
example.

® Use as many comments as possible.

® Format your programs with "prerty printing” Bracket subroutines with
asterisks or other symbols, and try to create listings that are easy to read.

® Use labels that correspond to the flowchart location points. You
might want to go back and add the labels to the flowchart after you've
coded them.

® Labels are not necessary unless they define jump locations or subroutine
locations. They just take up space in the EDTASM+ symbol table
otherwise.

When you assemble the program, don’t be disappointed if you get dozens of
errors. This happens to every programmer at different times. Typically, it
might take 3 passes to get rid of all errors.

Once you have a “clean program” without errors, you're ready to do program
debugging.
Program Debugging

The first step of debugging is called "desk checking.” Sit down at your desk, or
on the patio, and carefully go over the program listing. You may even want to
“play” computer” and pencil in the registers and stack, and then follow the

264

Writing Larger Assembly Language Programs 2 6

program flow. Chances are you'll uncover some errors that will necessitate
reassembly. Again, don’t be dismayed, few programmers can write programs
that work the first time.

After you've thoroughly desk checked the code and made any necessary
changes and reassemblies, then you're ready for “on-line” debugging.

Hints and Kinks 26-2
Desk Checking

Actually, desk checking is not as important with EDTASM+ as it
used to be when I wrote programs in industry. Then it was a fight for
“computer time” — 32 programmers on one large, expensive
machine. EDTASM+ and the Color Computer are so interactive that
you're ready for debugging almost as soon as you make one pass
through your flowchart to pick up gross logic errors and have a
“clean” assembly-language program. Temper this with your own
experiences.

There is no set procedure for debugging, but here are some general
guidelines:

® Use breakpoints to narrow down where an error is occurring. Breakpoint
at one location and see if the location is reached. If not, go to the halfway
pointand breakpoint there, and so forth, until you find the spot where the
error occurred.

e Always reload the program if it "blows up,” instead of restarting ZBUG.
Incorrect program operation might have destroyed parts of your program,
and this will create further errors or misleading information.

® Beaware of which instructions affect the Condition Codes, and which ones
do not. LEAS and LEAU, for example, NEVER affect the Condition
Codes.

® Make certain that you handle the stack properly, You should have executed
a PSH forevery PUL, and an RTS for every BSR or at least reset the stack
properly by other instructions.

Program Documentation

Once you have a final version of a program, then sit down and write a brief
summary of how it works. Include “internal” tables and data structures, and a
description of program variables, if the program is large. If you have a simple
subroutine interfacing to BASIC that is commented on the listing, then this
step IS Not necessary.

265

2 6 Writing Larger Assembly Language Programs

Review
To review what we've learned in this chapter:

® Program development consists of program design, flowcharting, coding,
debugging, and documentation

® The design phase consists of a program specification, or at least some
serious thought about what the program is to accomplish and how it will
go about it

® Somewhat standardized flowchart symbols are used to layout the program
flow in “schematic” form

¢ Coding should first be done on paper and then entered into EDTASM+

® Debugging consists of desk checking and actual “on-line” debugging using
a DEBUG package to trace down errors

® Final documentation may be written for larger programs to describe
program operation

For Further Study
EDTASM+ Manual

“"More TRS-80 Assembly-Language Programming,’ Radio Shack 62-2075, by
William Barden, Jr. (contains material on program development steps).

266

ABX
ADC

ADD

AND

ASL

ASR

BCC
BCS

BEQ
BGE

BGT

BHI

BLE

BLO

BLS

BLT

BMI
BNE
BPL

Appendix 1

6809 Instructions Capsulized
Adds B o X, result to X. Unsigned.

Adds immediate or memory operand to A or B plus current state of
Carry. Result to A or B.

Garden variety add of immediate or memory operand to A, B, or D.
Result to A, B, or D.

Logical AND of immediate or memory operand to A, B, or CC,
with result to A, B, or CC. ANDCC used to reset CC.

Arithmetic shift left. Actually a logical shift with zero filling Isb. A,
B, or memory location may be shifted.

Arithmetic shift right. Sign extends A, B, or location and shifts one
bit right.

Branch on Carry clear. Branch if C=0. Use 1.BCC if out of range.
Branch on Carry set. Branch if C=1. Use LBSC if out of range.
Branch if equal. Branch if Z=1. Use LBEQ if out of range.

Branch if greater or equal. Use for signed comparisons. Use LBGE
if out of range.

Branch if greater than. Use for signed comparisons. Use LBGT if
out of range.

Branch if high. Same as branch if A>B for unsigned numbers. Use
LBHI if out of range.

Branch if high or same. Same as A>=B for unsigned numbers. Use
LBHS if out of range.

Test any bit or bits of A or B by ANDing immediate or memory
operand and A or B. CC set on result.

Branch if less than or equal. Use for signed comparisons. Use LBLE
if out of range.

Branch if lower. Branch if A<<B. Use for unsigned comparisons.
Use LBLO if out of range.

Branch if lower or same. Use for unsigned comparisons. Use LBLS
if out of range.

Branch on less than. Use for signed comparisions. Use LBLT if out
of range.

Branch on minus. Branch if result sign is -. Use LBMI if out of range.
Branch on not equal. Branch if Z=0. Use LBNE if out of range.
Branch on plus. Branch if result sign is +. Use LBPL if out of range.

267

APPENDIX I 6809 Instructions Capsulized

BRA

BRN
BSR

BVC
BVS
CLR
CMP

COM

CWAI
DAA

DEC

EOR

EXG
INC

JMP
JSR
LD

LEA

Branch always. Anunconditional relative branch. Use LBRA if out
of range.

Branch Never. A NOP.

Branch to subroutine. Standard relative call to subroutine. Use
LBSR if out of range.

Branch if no overflow. Use LBVC if out of range.
Branch if overflow. Use LBVS if out of range.
Clear the A or B register or a memory location with 0.

Compare the contents of A, B, D, S, U, X, or Y with an immediate
or memory operand. Set all CCexcept H on result. Standard way of
comparing two operands.

One’s complement A, B, or memory location. Change all ones to
zeroes and all zeroes to ones.

Wait for interrupt.

Decimal adjust A register to change binary result to bed format.
Previous operation must have used bed operands.

Decrement | from A, B, or memory location. Convenient way of
subtracting I.

Logical exclusive OR of A or B and immediate or memory operand.
Each bit set if one but not both bits in two operands are a one.

Exchange any two cpu registers of the same length.

Increment 1 from A, B, or memory location. Convenient way of
adding 1.

Absolute (non-relative) unconditional jump to location.
Jump to subroutine. Another way of calling subroutine.

Load. Standard way of loading A, B, D, S, U, X, or Y with immed-
iate data value or operand from memory.

Load effective address. 6809 equivalent instruction to increment X
or Y. Also used for U and § and with any increment or decrement
amount. Can also use one index register in loading another.

Logical shift left. Shifts A, B, or memory location one bit left, filling
Isb with a zero.

Logical shift right. Shifts A, B, or memory location one bit right,
filling msb with a zero.

Multiplies A by B with result going into D (A contains ms byte, B
contains Is byte.) Multiply is unsigned.

6809 Instructions Capsulized APPENDIX I

NEG
NOP
OR

PSH

PUL

ROL

ROR

RTI

RTS

SBC

SUB

SW1
SYNC
TFR

TST

Two's complement (negate) A, B, or memory location.
Does nothing. No Condition Codes affected.

Logical OR of immediate or memory operand with A, B, or CC.
ORCC is used to set one or more condition codes.

Push one or more registers on stack. Use the register mnemonics
in any order as they are predefined in instruction. U or S stack may
be used.

Pull one or more registers from stack. Use the register mnemonics
inany order as they are predefined in instruction. U or S stack may
be used.

Rotate A, B, or memory location one bit left through the Carry
Condition code. This is a 9-bit rotate.

Rotate A, B, or memory location one bit right through the Carry
Condition Code. This is a 9-bit rotate.

Return from interrupt. Interrupt end instruction comparable to

RTS.

Return from subroutine. Pulls return address from S stack and
returns to instruction after call.

Subtract an immediate or memory operand plus any borrow in
Carry from contents of A or B. Result is put into A or B.

Sign extend B into A. If sign bit of B is a one (negative), put $FF
into A, otherwise put $00 into A.

Standard store of register to memory. A, B, 1D, S, U, X, or Y is stored
to a memory location or two memory locations.

Subtract an immediate or memory operand from A, B, or D regis-
ter. Result stored back into A, B, or D.

Software interrupt.
Synchronize to interrupt.

Transfer (copy) one register to another. Registers must be of
same size.

Test contents of A, B, or memory location by setting N and 7 condi-
tion Codes based on data in contents.

270

Appendix II

Detailed Instruction Set

6809 ADDRESSING MODES

INHERENT]| DIRECT | EXTENDED|[IMMEDIATE[INDEXEDT RELATIV]
INSTRUCTION, 243121140
FORMSIOP{ ~ oP #|OP| - | # [OP # {OP #|OP] “]# DESCRIPTION HINjZ]lV]|C
ABX 3A |3 B+«X -X o |oe|e]e]e
(UNSIGNED)
ADC ADCA 99 |4 |2| B3|S|3j89]|2]|2|A9]|4+]|2+ A+M+C -A theti bt
ADCB Dofa 2] Fo|s|3]cal2]|2|E9f4e]2r B'M+C -8B it
ADD ADDA 9B|4 2] BB|S|3]|8B|2]|2]|AB|4a+]|2+ A+M -A [N IR I
ADDB DBl4 | 2| FB| 5} 3 |CB| 2| 2 |EB]4+]2+ B:+M -B R B B
ADDD D3{6 |2l F3| 7| 3|cal4]|3|eafe]|2r D-MM«1 -D |1 i)
AND ANDA 94|14 2] B4ajS5| 3|84]2] 2 A4]4+]2¢ ANM - A eli]i]o]e
ANDB D4l 4 |2] FA] 5| 3 |C4| 2] 2 |E4]|4]|2+ B\M -B e li|i|O]-
ANDCC 1C| 312 CC ANIMM - CC 1
ASL ASLA 48| 2 A - 8l
ASLB (5812 g {0 Tkofs | | 1] :]!
ASL o666 |2 7817 3 68 |6+ |2+ MY ¢ b ba 8|1 gl
ASR ASRA 47| 2 A B s8lifi]le]:
ashs |57 2 AunnhE N
ASR 07|62y 77|7]3 67 [6+] 2+ M) b ST s8li]:ile}:
BCC BCC 241 312 Branch C O fojo|efe]"
L8CC 10]5(6)] 4 Long Branch o |eje|e|e
24 c o
BCS BCS 25 3|2 Branch C e jo|o]|e]e
LBCS 10§5(6)} 4 Long Branch oo feo]ele
25 C-1
BEQ BEQ 271312 Branch Z 0 ofefe]e
LBEQ 10)5(6)} 4 Loeng Branch sfefe|e
27 Z=0
BGE BGE 2C| 312 Branch 2Zeroje [e e e |e
LBGE 10]5(6)| 4 tong Branch o |e|o |0]e
2C Zero
BGT BGT 2E] 3| 2 Branch Zero o jeje|e]e
LBGT 10|5¢6)] 4 Long Branch o fo|e|e|e
2E Zero
BHI BHI 221312 Branch Higher| e e j e | e |o
LBHI 10}5(6)| 4 Long Branch e lele|eofe
22 Higher
BHS BHS 241 3|2 Branch Higher| o e e[e]e
or Same
LBHS 10|5(6)] 4 Long Branch o |ejeje|e
24 Higher or Same
BIT BITA 951412 B5S{ 5] 3(8]2]| 2]|A5]|4+]2+ BitTestAM~ A) e |1 |1]O]e
8178 DS| 4| 2] F5|5) 3 |C5) 2} 2 |E5|4+]2+ BitTestB(M " B) |} i |1]O]e
BLE BLE 2F1 312 Branch Zero | e (o | e .
LBLE 1015(6)] 4 Long Branch o jeo e .
2F Zero
BLO BLO 251 312 Branch Lower |e |[e e | e e
LBLO 10|5¢6)| 4 Long Branch o jefojeo]oe
25 Lower
BLS BLS 231 3|2 Branch Lower o |efo]e]e
or Same
LBLS 10|5(6)| 4 Long Branch ole|e]ele
23 Lower or Same
BLT BLT 2D} 3|2 Branch Zero| e |e (o] e e
LBLT 10f5(6)] 4 Long Branch e |ofe]e]e
2D Zero
BMI BMI 2Bl 3 |2 Branch Minus |o [e |e | e] e
LBMI 105(6)] 4 Long Branch oo |efe]e
2B Minus
BNE BNE 26| 3 |2 Branch Z # 0 oo |eje|e
LBNE 10|5(6)] 4 Long Branch o |e|eje]oe
26 Z+40
BPL BPL 2A} 3 | 2 Branch Pius o |e|o|e]e
LBPL 10]5(6)| 4 Long Branch e |efo]e e
2A Plus
BRA BRA 201 3 {2 Branch Always o |oe oo
LBRA 16] 513 LongBranchAlways| @ | e | e | e | e
BRN BRN 211 3 |2 Branch Never oo oo
LBRN 101 5|4 LongBranchNever { e | e j o | o | o
21

272

APPENDIX 1I

Detailed Instruction Set

BSR

BvVC

BVS

CLR

CMP

COM

CWAI

DAA
DEC

EOR

EXG
INC

JMP
JSR

LD

LEA

LSt

LSR

MUL

NEG

NOP
OR

PSH

BSR

LBSR

BvVC
LBVC

BvVS
LBVS

CLRA
CLRB
CLR

CMPA
CMPB
CMPD

CMPS
CMPU
CMPX

CMPY

COMA
comB
COM

DECA
DECB
DEC

EORA
EORB

R1 R2
INCA
INCB
INC

LDA
LDB
LDD
LDS

LDU
LDX
LDY

LEAS
LEAU
LEAX
LEAY

LSLA
LSLB
LsSL

LSRA
LSRB
LSR

NEGA
NEGB
NEG

ORA
ORB
ORCC

PSHS

PSHU

4F
5F

43
53

3C

19

4A
5A

1E
4c
5C

48
58

44
54

3D

40
50

34

36

LSRN

20

N

LIS

N

(NN

5

5+

OF

9N
D1
10
93
11
9C
1
93
9C

10
9C

03

0A

98
D8

0C

OE
D

96
D6
DC
10
DE
DE
9E
10
9E

08

04

00

9A
DA

NA A O

EN

DU A A N

[N

W N

N

WA PN

n

)

7F

B1
Fi
10
B3
11
BC
1
B3
BC

10
BC

73

7A

B8
F8

e

7E
BD

B6
F6
FC
10
FE
FE
BE
10
BE

78

74

70

BA
FA

@

@

w»

~

N Go @A

~N oo

3]

AWW

&

bWWW Ww W w

FNEARA)

81
C1
10
83
11
8C
11
83
8C

10
8C

88
cs

86
Cé
CC
10
CE
CE
8E
10
8E

8A
CA
1A

ENEAN NN

Howw

oA

N

[N

s woN

w w

NS N

6F

Al
E1
10
A3
1
AC
11
A3
AC

10
AC

63

6A

A8
ES

6C

6E
AD

Ab
E6
EC
10
EE
EE
AE
10
AE

32
33
30
31

68

64

60

AA
EA

4+
4+
7+

7+

7+

B+

4+
4+

6+

3+
7+
4+
4+
5+
6+

5+

5+
6+

4+
4+
4+
4+

6+

6+

6+

4+
4+

2+

2+
2+
3+

3+
3+

2+

2+

2+
2+

2+
2+
2+
2+
2+
3+

2+
2+
3+

2+
2+
2+
2+

2+

2+

2+
2+

8D

17

28
10
28

29
10
29

5(6)

3
5(6)

Branch to
Subroutine
Long Branch to
Subrouttne

Branch V-0

tong Branch
V-0

Branch V -1

Long Branch
V-1

0 -A

0-B

0 -M

Compare MfromA

Compare M fromB

CompareM: M + 1
from D

CompareM M+ 1
from S

CompareM M + 1
from U

CompareM M +1
from X

Compare MM + 1
from Y

-A

-B

-M

CC N IMM -CC,
Wait for Interrupt
Decimal Adjust A
A-1-A
B-1-8B
M-1-M

AYM -A

Z|mi»

Jump to Subroutine
M-A

M-B
MM+1-D
MM+1-S

M.M+1 -U
M.M+1--X
MM+t .Y

EA' -S
EA' -U
EA' - X
EA' -Y
A
sl0-
Msc

AxB -D

No Operation

AVM -A

BvM -B

CC vV IMM - CC

Push Registers on
S Stack

Push Registers on

- 0
b7 bu .

U Stack

™ o

® @ o oo o 0 o e 0o e o . e o 0 0 e oo 0 0

coo

ecoO

coo

o

cre e @ OO e

T I R) cCOC oOoQoOo e

oo .

. s s e @

L)

R ©ereeme amrnne S B ®

~N e e

Detailed Instruction Set APPENDIX II

PUL PULS 355+ |2 Pult Registersfrom|e [e Jo 1o e
S Stack
PULU 3715+ §2 Pull Registerstrom|e | [eo |o |e
U Stack
ROL ROLA | 49] 2 h A L R DA B B
RoLB | 59| 2 [+ BQ{[DI[]]]:] L B O A B
ROL 0916 |2]79]7 |3 69 [6+] 2+ M cb —bope b |
ROR RORA | 46| 2 |1 A P!
RORB | s6| 2 |1 Bm M EEEREEN
ROR o6 {6 [2]76}7 |3 66 {6+] 2+ M ¢ b -b tyiget!
RTI 3B[6/15 |1 Return From 7
Interrupt
RTS 39| 5 |1 Return From o e |o |o|e
Subroutine
SBC SBCA 92 |14 |2|B2}s5 [3 82 (2 [2|A2]a+] 2+ A-M-C—A N BT I
SBCB D2 |4 |2 |F2]5 |3 |c2)2 [2|€E2 |a+] 2+ B-M-C—-8B N N B B
SEX Dy 2 |1 Sign Extend B eli] {ote
into A
ST STA 9714 {2 |B7]5 |3 A7 |4+]2+ A-M i 11]o].
sTB D7 |4 |2 |F7]5 |3 E7 |4+] 2+ B -M sli]i]o]e
STD DD|s |2 |Fole |3 ED |5+ | 2+ D ~M:M+1 Sl fo|e
sTS 106 [3|10]7 |4 10 |6+ | 3+ S -MM+1 {11 |o]e
DF FF EF
STU DF}5 |2 |FF |6 |3 EF |5+] 2+ U-MM+1 1t]i]o]e
STX 9F |5 J2 |BF |6 |3 AF |5+] 24 X M M+1 el1 |1 o |-
STY 10]6 [3|10]7 |4 10 Y -MM+1 L3N A B [
9F BF AF |6+ | 3+
suB SUBA 90 [4 |2 |BO5 |3 |80 |2 |2 |ao |4+]2+ A-M~—~A LA RN
suBB DO |4 |2 |FOf5 [3 |Cco]2 |2 [EOD |a+ |2+ B-M -B I S R D
sSuBD 93 |6 2 |B3|7 |3 183 |4 |3 |A3 |6+ {2+ D-M:M+1-D L RO O P
SWi Swis 3F{19 |t Software
Interrupt 1 oo |o | lo
Swi2¢ 1020 |2 Software
3F Interrupt 2 oo o o |o
SWI3! 1120 {2 Software
3F Interrupt 3 o |e le o |o
SYNC 13] 22 |1 Synchronize to ofe fe le|e
Interrupt
TFR R1.R2 | 1F} 7 |2 R1 ~R2* e oo fe]e
ST TSTA 4p| 2 |1 TestA sli|t]o}fe
TSTB 50| 2 |1 TestB el111]o}e
TST oo|6|2|cf7 |3 60D |6+| 2+ TestM elilifofe
INDEXED ADDRESSING MODES
NON INDIRECT INDIRECT
Assembler | Post-Byte | + | + | Assembler | Post-Byte | + | +
TYPE FORMS Form OP Code | ~] # Form OP Code |}~
CONSTANT OFFSET FROM R NO OFFSET .R 1RR0O0100J 0] O [,R] 1RR10100 | 3
5 BIT OFFSET n,R ORRnnnnnf 110 defaults to 8-bit
8 BIT OFFSET n,R 1RRO1000 | 1 | 1 (n,R] 1RR11000 1 4 | 1
16 BIT OFFSET n R 1RR01001 J 4] 2 [n,R] 1RR11001 f 7 2
ACCUMULATOROFFSETFROMR A—REGISTEROFFSET AR 1RRO0110f 1] 0 {A,R) 1RR10110 | 4] O
B—REGISTEROFFSET B.R 1RR00101 § 1] 0 [B,R} 1RR10101 | 4} 0O
D—REGISTER OFFSET D, R 1RRO1011 4|0 [D, R} 1RR11011 | 70
AUTO INCREMENT/DECREMENT R INCREMENT BY 1 ,R+ 1RR0O0000 J 2| O not allowed
INCREMENT BY 2 ,R++ 1RR0O0001 3|0 [.R++]) | 1RR10001 0
DECREMENT B8Y 1 ,-R 1RROCO1G0 2|0 now allowed
DECREMENT BY 2 ,--R 1RR00011 [310 [,--R] 1RR10001 | 6] O
CONSTANT OFFSET FROM PC 8 BIT OFFSET n, PCR 1XX01100 [1 f 1| (n,PCR] f1xxt1100 f4]1
16 BIT OFFSET n, PCR 1XX01101 | 5|2 [n.PCR] 1XX11101 | 8] 2
EXTENDED INDIRECT 16 BIT ADDRESS — — —|— [n] 10011111 | 5] 2
R=X,Y,U orS
X = DON'T CARE

273

APPENDIX II Detailed Instruction Set

NOTES:

1.

Given in the table are the base cycles and byte counts. To determine the total cycles and
byte counts add the values from the ‘6809 indexing modes’ table.

R1 and R2 may be any pair of 8 bit or any pair of 16 bit registers.

The 8 bit registers are: A, B, CC, DP

The 16 bit registers are: X, Y, U, S, D, PC

3. EA is the effective address.
4. The PSH and PUL instructions require 5 cycles plus 1 cycle for each byte pushed or pulled.
5. 5(6) means: 5 cycles if branch not taken, 6 cycles if taken.
6. SW1 sets I&F bits. SW12 and SW13 do not affect |&F.
7. Conditions Codes set as a direct result of the instruction.
8. Value of half-carry flag is undefined.
9. Special Case—Carry set if b7 is SET.
LEGEND:
OP Operation Code (Hexadecimal); Z Zero (byte)
Number of MPU Cycles; \" Overflow, 2's complement
Number of Program Bytes; C Carry from bit 7
+ Arithmetic Plus; ! Test and set if true, cleared otherwise
- Arithmetic Minus; . Not Affected
* Multiply CC Condition Code Register
M Complement of M; ' : Concatenation
— Transfer into; V Logical or
H Half-carry from bit 3; AN Logical and
N Negative (sign bit) & Logical Exclusive or

274

Editor Commands

Appendix III

EDTASM+ Commands

A
C

Assemble

Copy

Delete

Edit

Find

Hardcopy

Insert
Load

Move

Renumber

Display

Quit
Replace

Print

Verify

Assembles current text. See Assembler Commands.

Copies a block of lines to a new position. Source block re-
mains unchanged. C1000,100:130,5 copies 100-130 to
new set of lines starting with 1000 with increment 5.

Deletes one or more lines. D deletes current line, D100
deletes line 100, D300:500 deletes lines 300-500.

Enter Edit subcommand mode. E100 enters Edit sub-
command mode for line 100.

Find one or more characters in text buffer. FA searches
for “A; FLABEL searches for "LABEL! F without string
searches for last string.

List a set of lines to system printer. H prints current
line, H100 prints line 100, H#:* prints entire buffer,
H100:300 prints lines 100-300.

Enter insert mode. 1301,1 inserts from line 301 with
increment 1. 1301 inserts from 301 with last increment.

Loads cassette source file. L loads next file from

cassette. . NAME loads file NAME.

Moves a block of lines from one position to another.
M1000,100:300,10 moves lines 100 through 300 to new
position starting with line number 1000 and incre-
ment 10.

Renumbers text lines. N100,10 renumbers starting with
line 100 and increment 10.

Displays text lines on screen. P# displays first line,
P100:300 displays lines 100-300, P#:* displays entire
buffer.

Returns to BASIC.

Replaces one line and then enters insert mode. R100,10
replaces line 100 and then enters insert mode with line
increment 10.

Like H except line numbers are not printed.

Verifies previously written cassette file with contents
of text buffer. V verifies next file, V NAME verifies file
NAME.

275

APPENDIX III

EDTASM+ Commands

W

Z

Write

ZBUG

Writes text buffer to cassette. W writes text as file
NONAME, W NAME writes file as NAME.

Transfers control to ZBUG.

A Commands for Assembly

/AO
/IM
/LP
/MO
/NL
/NO
/NS
JWE

ZBUG Commands

Assemble with absolute origin

Assemble in memory

Listing to Line Printer

Use manual origin

No listing
No object

No symbol table

Wait on errors

A
B
C
D
E
G

O

276

ASCII
Byte mode
Continue
Display
Editor

Go

Half
symbolic

Input base

Load

Mnemonic
mode

Numeric
mode

Output base

Save tape

Display in ASCIL. Non-ASCII as blanks.

Set Byte mode. Display contents as 8-bit value.
Continue from breakpoint.

Display current breakpoints.

Return to Editor.

Execute from location. GSTART starts from
location START, GAOOQ starts from $A00.

Display instruction addresses as numeric, but in-
structions as mnemonic.

Set input base. 110 sets decimal.

Load machine-language file. 1. loads next cassette file,

[. NAME loads file NAME.

Set mnemonic mode. Instructions displayed in their
mnemonic form.

Set numeric mode. Data displayed as numeric values
rather than instruction mnemonics.

Set output base. Q16 sets hexadecimal.

Dump memory to cassette as machine-language or
memory image.

PNAME 3000 3010 3000 dumps locations 3000
through 3010 as file NAME with execution address
3000. Use dummy execution address for data.

EDTASM+ Commands

APPENDIX III

R

TH

U

Display
registers

Symbolic

mode

Display
block

Hardcopy
block

Move block

Verify

Word mode

Breakpoint

Yank
break-
point
Examine
preceding
Examine
next
Branch
indirect
Force
numeric
Force
numeric
byte
Force
flags

Examine

Single
step

Displays contents of all registers.

Display addresses in symbolic form based upon cur-
rent contents of symbol table.

Display a block of locations. T3000 3010 displays
locations 3000 through 3010.

Print a block of locations. Similar to T.

Move a block of locations from one memory location
to another. M3000 4000 10 moves the 16 locations
from 3000 through 300F to locations 1000 through
400F.

Verifies machine language file. V verifies next cassette
file, V NAME verifies file NAME.

Sets word mode. Data is displayed as 16-bit words.

Set breakpoint. XLOOP sets breakpoint at location
LLOOP, XAO00 sets breakpoint at location AQO.

Kills breakpoint. Y kills all breakpoints, Y3 kills
breakpoint number 3.

Examine preceding location.

Examine next location, increment based on cur-
rent modes.

Treat current display data as address, and reset dis-
play location to that address.

One time display of current data to numeric.

One time display of current data to numeric and
byte modes.

Convert current data to flag mnemonics.

Examine (display) register or memory location. A/
examines A register, LABEL/ examines location
LABEL, A00/ examines location $A00.

Execute one instruction. START, starts at START
and executes one instruction, comma alone con-
tinues from current instruction location.

278

Appendix IV
Binary/Decimal/Hexadecimal

Conversions
HEX B INARY DECIMAL
%]"] 20020000 "/}
D1 200001 1
oz Q0000010 =
03 2022001 1 3
Q4 20003100 4
25 20000101 5
D6 00000110 &
27 DoRRO111 7
o8 20001000 8
29 20001001 9
2A 20001010 10
13 20001011 11
@ac 00001100 12
oD 02001101 13
QE 20001110 14
oF 20001111 15
10 20010000 16
11 22010001 17
1z Q0010010 18
13 20012011 12
14 Q0010100 20
15 22210101 21
16 ooa101102 22
17 QoOiId111 23
i8 000110200 24
19 00011001 25
1A 20011010 26
1B 20011011 27
1C 22011100 28
1D 20011101 29
1E Q2011110 30
1F 20011111 31
20 20120000 32
21 20100001 33
22 20102010 34
23 2012001 1 35
24 0100100 346
25 22120101 37
26 20100110 38
27 V2100111 39
28 20101200 40
29 20101001 41
2A 22101010 42
2B 00101011 43
2C 20101100 44
2D 02101101 45
2E P0121110 44
z2F 201901111 47
30 00110000 48
31 22110001 49
32 20110010 50
33 oD110@11 51
34 22110100 52
35 20110101} 53
36 20110110 54
37 02112111 55
38 22111000 Sé6
39 P0111001 57
3A 20111010 58
3R 20111011 59
3C 00111100 &0
3D 20111101 b1
3E 201111108 b2

279

APPENDIX IV Binary/Decimal/Hexadecimal Conversions

I« L INARY DECIMe
aF 20111111 63
40 01000000 b4
41 21000001 65
42 01000010 66
43 2100001 1 67
44 21000100 68
45 21000101 69
46 21000110 70
47 01000111 71
48 21001000 7z
49 21001001 73
4A 01001010 74
4B 21001011 75
4C 21001100 76
4D 01001101 77
4E 01001110 78
4F 01001111 79
S0 01010000 80
51 21010001 81
5z 01010010 32
53 01010011 a3
54 21010100 8%
59 01010101 85
56 21010110 86
57 01010111 a7
58 01011000 a8
59 010110201 89
54 01011010 90
SB 21011011 91
5¢ 01011100 o
5D 01011101 93
SE 01011110 P4
5F Q1B11111 95
50 01100000 w6
61 71100001 97
bz 01100018 93
&3 1100011 QG
b4 01100100 100
&5 21100101 101
bé 1123110 1Q°
&7 A1100111 103
68 21101000 104
&9 Q1101001 105
bA 21101010 106
bE A1101011 1a7
6C 21101100 108
&D 01101101 129
bHE 21101110 110
&F 01101111 111
70 01110000 1z
71 01110001 113
7z 21110010 114
73 ©1110011 115
74 01110100 116
75 21110101 117
76 01110110 118
77 21110111 119
78 21111000 120
79 P1111001 3
74 21111010

7B 21111011 123
7C 1111100 124
7D 01111101 125
7E @111111@ 126
7F 1111111 127
80 1 0000000 128
81 100000 1 129
8z 10000010 130
83 1000081 1 131

280

Binary/Decimal/Hexadecimal Conversions

APPENDIX IV

HEX

84
85
86
87
88

89
84
B8E:
ac
8D
8E
gF
90
93
9z
93
94
5
96
97
98
59
94
9B

BF
Co

CH4
C4

R INARY

10000100
12000101
10000110
10000111
10001000
10001221
100010210
10001211
10001100
12001101
10001110
12001111
10010000
10010001
12010010
10010811
10010100
10010101
10010110
1001@111
1001 1 000
100110201
10011010
10011011
10011100
109011131
10011110
10011111
10100000
10100021
10100810
10102001 1
10100100
12100101
10100110Q
12100111
10101000
10101001
10101210
10101011
10181100
10101101
121921110
12121131
10110000
10110001
10110010
10110011
10110100
10110101
10110112
10110111
190111000
12111001
10111010
12111@11
10111100
101111021
18111110
19111111
11000000
11000001
11000210
11000011
11000100
11000101
11000110
11000111
11001000

DE.CTMAL.

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
15@
151
152
153
154
155
156

137
158

159
160
161
163
1463
164
165
166
167
168
169
170
171
172
172
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

APPENDIX IV Binary/Decimal/Hexadecimal Conversions

HE X M INARY Dr.C1tal
cy 110010001
CA 11021910
ce 11001011
CcC 11001100
CD 11001101
CE 11001110
CF 11001111
Do 11210000
D1 11010001
Do 11210010
D 11010@11
D4 11012100
De 11@10101
Do 11o1at1e
D7 11010111
D8 11011000
DY 11011001
DA 11011010@
be 11@11@211
DC 11011100
DD 11011101
DE 11011110@
DF 11011111
E@ 11100000
El 11100001
EZ 11100010
E3 11120011
E4 11100100
ES 11100101
E6 1110011@
E7 111008111
E8 11101000
E? 11121001
EA 11101012
EB 11101011
EC 11121100
ED 111901101
EE 11101110
EF 11101111
Fo 11110000
F1 11110001
Fz 11110010
F3 11110011
F4 11110100
FS 11112101
Fé 11110110
F7 111102111
F8 11111000
Fo 11111001
FA 11111010
FE 11111011
FC 11111100
FD 11111101
FE 11111110
FF 11111111

282

To Convert From Binary or Hexadecimal to Decimal:
1. If number is 8 bits or less, use table.

2. If number is greater than 8 bits, use this method:

mmooO% >

Divide into two bytes (add zeroes to left if necessary)
Convert first (most significant) by table.

Multiply decimal equivalent of first by 256.

Convert second (least significant) by table.

Add the results of C and D together to find the decimal number.
Example: Convert $AA88 to decimal.

a. First byte is AA, second is 88.

b. From table, first is 170 in decimal.

¢. The value 170 multiplied by 256 is 43,520.

d. Second byte of 88 is 136 decimal from table.

e. 43,520+136 is 43,656 decimal = $AASS.

To Convert From Decimal to Binary or Hexadecimal:
1. If number is 255 or less, use table.

2. If number is greater than 255, use this method:

TCoOZ»

o

Divide by 256 to get an integer result and a remainder.

Convert integer result to a hexadecimal or binary number by table.
Convert remainder to a hexadecimal or binary number by table.
Write down the hex number from B followed by hex number from C;
you should have four hex digits or 16 binary digits. The result is the
number in hex or binary.

Example: convert 60000 to hexadecimal.

a. 60000/256=234, remainder of 96.

b. From table, integer 234 is EA in hexadecimal.

¢. From table, remainder 96 is 60 in hexadecimal.

d. EA followed by 60 is $EAGO = 60000 decimal.

283

284

Appendix V
Two’s Complement Numbers

HEX

BINARY

21111111
21111110
21111101
01111100
21111011
1111210
21111001
01111000
B1110111
91110110
211102101
21110100
21110011
21110010
21110001
21110000
21101111
0110111@
01101101
21121100
21101011
Di1121010
21101001
21101000
21100111
21100110
21100101
2110601020
21100011
21100010
2110000a1
21100000
21811111
01011110
21011101
21011100
21011011
21011010
21011001
21011000
P1@10111
21210110
21010101
Q1010100
212310011
R1210010
21010001
010102000
21001111
21001110
01001101
21001100
1001011
21201010
21001001
21001000
D10@0111
D1002110
01000101
21000100
21000011
210000102
21000001
210200000
Q0111111
@eo111110

DECIMAL.

B R R R R I o T T e e S S S O N T T T 2 T N R e e

285

APPENDIX V Two's Complement Numbers

HE X B INARY DECTIMA

3D 20111101 + 61

3C 20111100 + 60

3e 20111011 + 59

3A 20111019 + 58

39 A0111001 + 57

38 20111000 + 5&

37 20110111 +

36 20112110 + 5

35 20110101 +

34 02110100 + .

33 20110011 +

3z 20110010 +

31 20110001 +

an 02110000 +

ZF 20101111 +

4 20101110 +
P2101101 +
onig1100 +
Po101d11 +
2121010 +
00101001 +
00101000 +
201006111 +
P0102110 +
201001021 +
euivo1be +
00100011 +
20100010 +
Q2100001 +
20100000 L
Quaiiilll +
00011110 +
20011101 +

1C 0211100 +

1B PP11311 +

1A a0011018 +

12 0311001 +

18 2ea1 1000 +

17 0R1d111 i

14 20e10110 +

15 aro10101 +

14 Qea10100 +

i3 20010011 +

12 20012010 +

11 QD 10001 +

10 22010000 +

oF PRod1111 +

QE 200B111@ +

@D 20001161 +

2C 20001 100 +

ae 20001011 +

oA 20201010 +

29 20001001 + 9

28 20201000 + B

a7 0eveo111 + 7

(413 20000110 + b

@5 o0or0101 + 5

B4 voRan120 + 4

23 P0000A11 + 3

oz PeooR010 + ¢

a1 0000001 + 1

o 20220000 + 0

FF 11111111 -1

FE 11111110 - &

FD 11111101 - 3

F¢C 11111100 4

Fe 11111011 -5

FA 11111010 - b

Fe 11111001 - 7

286

Two's Complement Numbers

APPENDIX V

HFX
F8
F7
F&6
F5
F4
F3
Fz
F1
FO
EF
EE
ED
EC
ER
EA
E®?
€8
€7
E6
ED
E4
E3
EZ
El
E®
DF
DE
DD
DC
DE
DA
Do
D8
D7
D&
D5
D4
D3
Dz
D1
DO
CF
CE
cD
cC
ce
CA
c9
€8
Cc7
Cé
cS
C4
C3
c
C1
[q
BF
BE
BD
BC
(512
BA
234
B&
B7
W&
Bs
B4
B3

R INARY

11111000
11110111
11110110
11110101
11110100
11110011
11110010
11110081
11112000
11101111
11101110
11101101
11101100
11101011
11101010
11101001
11101000
111280111
11100110
11100101
11100100
11100011
11100010
11100001
11100000
11011111
11011110
11011101
11811100
11011011
11011210
11011001
11011000
11010111
11018110
11010101
11010100
11010011
11010010
11010001
11010000
11001111
11001110
11001101
11001100
11001011
11001210
11001001
11001000
11000111
11200110
11000101
11000102
11080011
11pea01@
11000001
11000000

10111111
10111110

10111101
12111100
10111011
1p111010@2
12111001
12111000
10110111
10110110
101101021
10110100
10110011

DFE.CTMALL

287

APPENDIX V Two's Complement Numbers

HI™ 4 ETNARY DF C1Mal
B 10110010 -8
B1 10110001 -
) 10110000 -
AF 1@1@t111 -
AE 1a10it1e -
AD 10101101 -
AC 10101100 -
AR 10101011 -
AA ie101010 -
A9 10101001 -
AB 10101000
A7 10100111 -
AL ip1o011e -
AS 12100101 -
An 10100100 -
A3 10100011 -
A 12100010 -
Al 10100001 -
AD 10100000 -
9F 10011111 -
9E 10011112 -
9D 10011101 -
9C 1e011100 -
9k 10011011 -
9A 10011010 -
99 10011001 -
98 10011000 -
97 10010111 -
96 19010110 -
95 10010101 -
74 10010100 -
93 10010011 -
9z 1e210010 -
91 18010001 -
50 10010000 -
8F 10001111 -
8E 12001110 -
8D 10001101 -
8C 10001100 -
8e 12001011 -
8 too01010 -
89 10001001 -
88 10001000 -
87 10000111 -
86 10000110 -
85 10000101 -
84 10000100 -
83 1000001 1 -
8z 12000010 -
81 10000001 -
80 10000000 -

288

Appendix VI
ASCII Codes for the Color Computer
(EDTASM+ Generated)

HEX DECIMAL ASCII

20 32 (space)
21 33 !
22 34 ”
23 35 #
24 30 $
25 37 Z
26 38 &
27 39 '
28 40

29 41)
2A 42 *
2B 43 +
2C 44 ,
2D 45 -
2E 46 .
2F 47 /
30 48 0
31 49 1
32 50 2
33 51 3
34 52 4
35 53 S -
36 54 0
37 95 7
38 56 8
39 57 9
3A S8 :
3B 59 ;
3C 60 <
3D 61 =
3E 62 >
3F 63 ?
40 64 @
41 65 A
42 66 B
43 67 C
44 68 D
45 69 E
46 70 F
47 71 G
48 72 H

289

APPENDIX VI ASCII Codes for the Color Computer

49 73 I

4A 74]

4B 75 K

4C 76 L

4D 77 M

4E 78 N

4F 79 O

50 80 P

51 8 Q

52 82 R

53 83 S

54 84 T

59 85 U

56 86 \Y

S7 87 W

58 88 X

59 89 Y

SA 90 Z

SB 91 left bracket
5C 92 reverse slash
SD 93 right bracket
SE 94 up arrow
SF 95 left arrow

290

A/AO command ...t e e 183-184
A/IMcommand. ..o i e e 5
A/LP command. i e e 5
A/MO commandot i i i et i e 184-185
A/NL commando i e 190
A/NO command ... 190
A/SS command e 190
A/WE commando e e e 6
S =74] o 15
Accumulator offset addressing o i i el 223
1 2T o T U 45-48
AND InSTIUCHION « ot ittt ettt et ettt it e 82-83
ANDCC L e e 83-84
Arithmetic shifts oo 199-161

Assembly Process ..o e e i e 3
ASTErISK Lo e e e 227
Auto increment, deCremMent .. v v ie e ieeeiiieereeannnan 125, 174, 222-223
B oreiSter ottt e e e 15
Base, What 10 18 . ittt et et e e et 19-20
Binary representationl i i e 16
Bit numbering ... i 49
BITA, BITB instructionso vt i i ia s 84
BitS oo e e 13, 16-18, 49
BRA INStrUCtION ottt i it e e it i it e i 63
Branch indirece, ZBUG i el 228
Branches, long . ..o o i e 76
Branches, relative 69-77
Branches, types of ... o i 74-77
Breakpoints ...t el 27,29
BRIN INSTIUCTION ot ittt it it ettt ittt ene s 74
BSR INSIEUCHION .« ot ittt et it et it e ittt et 131-133, 136
Bubble sortso e 2-125, 177 128
Byt o ot e 13
C command, EDTASM+ edit mode20
C condition Code ... vt ittt e e e 58, 87-92
Carry condition codeo 58, 87-92
Cassette, OULPUL Of oottt it ittt ittt ie e ettt ceannananenas 4
(O O T T T P 15-16
Clear Screen program ...ttt it ce e 196-187
Clear Screen ROM subroutineoi i 215
L8 8 T T € T 0o 125
CMP InStruction ... vv ittt ittt e iae et e i et 56-57
Coding Programs. ...ttt i i i it i 264
COM QNSEEUCTION © 0ttt ettt e e e et i is e iaaas 80-81
Comment liNes ...t e e e 15
ComPare INSIIUCHION & v vttt ittt it it et eie et et e aiaeanauans 56-57
COMPATISON TESL « vttt ettt ittt ettt i e 65-66
Comparisons, unsigned s 127
Condition codes, examiningo iiniiniiiiii i, 149
Condition codes, general. o i 56-59
Conditional Jumps o e 64-66
Conditions for branches i i e 65
Converting from binary todecimal o ool 17-18
Converting from binary to hexadecimal o L 19
Converting from decimal to binaryo o i 17-18
Converting from hexadecimal tobinary o i il 19

INDEX

Cpu,what it is ... 14
CWATL INSEOUCHION vttt e et et e e e e et e e e e e e eeenenn 177
D command, EDTASM+ edit mode. ...t eiinennee 20
D oregister. ..o i a2 2D
DAA INSIIUCHION & ottt et e ettt ettt eineenenes 173-175
Data values, generatingttt 95-101
DATA values, in hex. .. oot i e e e e ittt 188
Debugging programs o i i 264-265
Decimal arithmetic oo 173-175
Decrements ... e e e 79-80
Defining where object is i e 188
Direct page addressingo e 39-42
Display Character subroutine i i 211-212
Divide routines i e 165-171
Documentationt i e i e et 209
Dollar sign prefix ... 20
Down arrow, ZBUG ..o e e 22-23
DIP register oot i e e e 15
Edit mode. . .o e e e e 1
Efficient INSIrUCTIONS . . oo ottt et et it it e et et ee e e aeaeans 31
EOR Instruction ...t i e i ettt it e ettt et e 83
EQU pseudo-Op . v ottt it e e e e e 226
Executing an assembled program oL i i 6-7
EX G instruction . ou e oottt it it e e e e e e 30
EXPressionst i i e 126-127
Extended addressing e 35-37
F command, EDTASM+ edit modet 26
FCB pseudo-op ..o e e 97-98
FCC pseudo-op .o e 99-101
FDB pseudo-op ..ot e 99
Flowcharting i e 261-264
Get Keyboard Character subroutine, 211-212
Graphics modes 237
Graphics SCrEENS vttt e it e ettt 234-237
Graphics, assembly language i i 231-243
Greater thansign, ZBUG o i i i 42
H command, EDTASM+ edit mode oo, 8
Hexadecimal representation..........cviveiieiiiinennnnnnn.. 15, 16-19, 20
I command, EDTASM+ edit modeco i, 8-9
Immediate loads e 28, 63
o Ta 3 4313 0 1€ 79-80
Indexed addressingcoiiiiiiiiiii i 37-39, 109-119
Indexing formats ... ouuv i i e 113-114
Indirect addressingvoiiiiii i e e 215, 225-226
Inherent addressing.c.c.oiiiiiiiiiiie it iiiener s 31
InStruction fOrmMats . ..ot v ittt it e it et e ettt et 37
[NStruCtion MNEMONMICS « v v vttt ettt e e te s ettt eaeaeien e raranenanos 1
INSTIUCTION SET Lo v vttt ettt ettt et e et e e e 1
IEEITUPES ottt e 142
JMP Instruction ovu ittt i i e e e e 62-63
JSRUNStIUCTION ..ot e e e e e 137
L command, EDTASM+ edit mode viinin i i 9
L command, EDTASM+ ZBUGt i ittt ee e 106
Labels ..o e 2,63, 126
LEA INStruCtion . .« u et i e e it 79-80

292

Less than sign, ZBUG i e e 42
Lists Of data ..ot e e e 95
Loading registers . .o vttt i e 25-29
Logical OPerationsuuuun ittt iiiii i 81-84
Logical shifts o i 155-156
Long branch.o e 76-77
M command, EDTASM+ ZBUG i it i it ieiennn 162
MemOry Map .. .ovi ittt ittt ittt it i i s 181-183, 231-232
Microcomputer Math o i i e 87
MEemONIC fOrmM . ottt it ettt e et e e 21
MNEMONICS, INSEIUCTION vt vttt e et et ettt et st teterasaeenenenenens |
Modifying memory, ZBUG 21-22
MUL I0SEIUCHION &t ittt et e et et e et e e et ee e e e 156-158
Multiple-precision numbers ... i i 87-92
Multiply instruction e 156-158
Multiply TOUTINES oo vt e e 170-171
MUSIC SYNThESIZEr .o v ittt it e e et e e 251-257
N command, EDTASM+ edit mode00iiiiiiniiii i, 8
N command, EDTASM+ ZBUG it i e 162
NEG InStruction . ..ottt i et ct e e e 80-81
Negative condition codeo vt it e i e e 55-56
Nested l0OPS v vttt e 62
Nested stack calls oo i i e i e e 134
NOP I0STIUCTION .\ vttt ettt ettt et e it e it anan 176-177
Op code vt e i el 2
Operands ...t el 2
OR INSEIUCHION . ¢ . ottt et et ettt et e en e 81-82
ORCC INSIUCTION v vttt ettt ettt ie et en s en e ann e naneanenns 83-84
ORG pseudo-0p .o oottt i i e e e 183-184
Ordering data. ..o oo e e e 121
Overflow condition code ovunir it i i e e 57-58
P command, EDTASM+ edit modeot 8
P command, EDTASM+ ZBUGo i e e 106
Pages . 39-41
Parameters, subroutinet i 145, 193-198, 206-208
PC register oot e e e e 19, 27
PC relative addressing ...t a2 2232225
Position independent code ... o 225
Program design i e 261
PULS InSTIUCHON . ¢ ot vttt et e ittt i e e te e et enie i nannas 142-146
PSHS I0StruCtion . . oottt ettt et e et v e et a e e e 1142-146
Q command, EDTASM+ editmode.........ooo o i 8
R command, EDTASM+editmode....... ... i ...26
Registers, 0800 i e 13,222
Relative addressing, o i 73-74
Relocatability . ..o o 185-186, 196, 225
Right arrow, ZBUG . .. oo 0228
RMB pseudo-op. ..o e e 175
ROTate INSIIUCHIONS v vt ittt ettt e ittt ittt e e aeeeenaneneen 153-15%
RS InStrUCION « e ettt s ittt ettt ettt e it 133-137, 221
S command, EDTASM+ ZBUG i et ceie e 162
S T BISEET « it ittt e e e 16, 219
Sstack oo 133-134, 141-150, 196, 219-221]
Screen graphics ..o e e e 149
Screen wraparound e e e e 215

INDEX

SET pseudo-op ..ot e 20226
SEX INSIIUCTION « vttt e i et ettt ittt et i 161-162
St IS IrUCTIONS & vttt e e ettt e ettt s 155-163
Single step, ZBUG ... e e 54-55
Sixteen-bit NUIMbBErs ... i it et e e et 48
Slash command, EDTASM+ ZBUG oot i i i i 20
SOt o i i e e e e s 121-125
Sound, assembly language....... o i 245-2598
SQUATE FOOT PLOZIAITI . Lttt ettt ettt e in e ie i en s 69-72
Stopping the assembly 31
Subroutines, assembly languageo o ool 131-137, 147-149
Subroutines, ROM ... e e 211-216
107 Tl o 10 s L 48-51
SWI, SWI2, SWI3 InStruCtionS . o v o et ettt et e in it ee e einaaanenn 177
Symbolic addressingo i e 61-62
Symbols at assembly end o e 27-28
SYNC INSIIUCTION ottt it ittt ettt e ettt e e e et ettt ne s 177
T examination mode, ZBUG ... i e e e e 46
Table lookup .o 95-97, 114-119
Tables oo e 95-109, 114-119
Text editOr oo e e 2122215
TEXU SCTCEIM L+t vt ettt et e e et e e et e et ea e, 232-234
TER INSTOUCHION . 4 4 e ot ettt e e e e e e e e et et aeaean 29-30
TIMING LOOPS - oot e 131-132
Transferring control to assembly language 186-188, 189
Two's complement numbers o i i e 49-51
U command, EDTASM+, ZBUGot ee et 105
LI Y 2 16, 219
U StacK oot e e e 176, 219-221
Unconditional Jumps.o o e 62-63
Up arrow, ZBUG ..o e 22223
Vocondition code . ..o e e e 57-58
VARPTR command i et e e 201-205
W command, EDTASM+ edit modeo i i e, 9
W command, EDTASM+ ZBUG i e i i e 162
D Q434 1Y € 16
B G 4711 P 16
Z command, EDTASM+ ZBUG e e e e 15
Zocondition code « .o e e e 53-55
ZOOM Program ...ttt e ie et e 237-243

294

	Cover
	Color Computer Assembly Language Programming
	Preface
	Table of Contents
	Chapter 1. 6809/Color COmputer Assembly Language
	The 6809 Instruction Set
	Instruction Mnemonics
	Comment Lines
	Labels
	The Assembly Language Process
	Executing (Running) the Program
	EDTASM+ Edit Commands
	Review
	For Further Study

	Chapter 2. 6809 Registers
	What Is a 6809 Register?
	Register Functions
	Binary and Hexadecimal
	Binary

	Using the ZBUG Modify Register and Modify Memory Commands
	ZBUG Modify Register
	ZBUG - Modify Memory
	Know What Memory Location You're Modifying

	Review
	For Further Study

	Chapter 3. Transferring Data to Registers
	Loading Registers
	Immediate Loads
	Transferring Data Between CPU Registers
	The EXG Instruction
	A Special Clear Instruction
	Inherent Addressing
	Review
	For Further Study

	Chapter 4. Loading and Storing Data Bwtween Registers and Memory
	Extended Addressing
	Simple Indexed Addressing
	Direct Page Addressing
	When Should You Use Direct and When Extended Addressing?
	Review
	For Further Study

	Chapter 5. Addition and Subtraction
	Eight-Bit Adds
	Sixteen-Bit Adds
	Subtracts
	Two's Complement Numbers
	Review
	For Further Study

	Chapter 6. Using The Condition Codes
	More on Adds and Subtracts - the Z Condition Code
	The N(egative) Condition Code
	The Compare
	A Special CMP
	The Overflow (V) Condition Code
	The C(arry) Condition Code
	Review
	For Further Study

	Chapter 7. Symbolic Addressing, Jumps, and Branches
	Symbolic Addressing
	Unconditional Jumps
	Conditional Jumps (Branches)
	Conditions for Branches
	A Comparison Test Using Modify Memory
	Review
	For Further Study

	Chapter 8. Relative Branches, Conditional and Unconditional
	Relative Addressing
	Types of BRs
	Limitation of BRs
	The Long Branch is Not a Fort Worth Branch
	Review
	For Further Study

	Chapter 9. Increments, Decrements, Complements, and Logical Operations
	Increments and Decrements
	The LEA for 16-Bit Registers
	The NEA and COM Instructions
	Logical Operations
	Using ORCC and ANDCC
	A Special AND
	Review

	Chapter 10. Using the Carry for Gobs of Precision
	Multiple-Precision Numbers
	Eight-Bit Add With Carry
	Eight-Bit Subtracts With "Borrow"
	Other Multiple-Precision Operations
	Review
	For Further Study

	Chapter 11. Generating Data Values and Simple Indexing
	A List of data
	A Numeric Table Lookup
	The FCB Pseudo-Op
	Entries of More Than One Byte
	The FDB Pseudo-Op
	The FCC Pseudo-Op
	Review
	For Further Study

	Chapter 12. Indexing Operations Using X and Y
	Indexed Addressing
	Variable Offsets From X and Y
	Table Operations Using Indexing
	Review
	For Further Study

	Chapter 13. Operations of a Different Sort and Unsigned Comparisons
	Types of Orders
	Sorting
	"Auto" Incrementing and Decrementing
	Labeling a Variable Location
	Using Expressions
	Using Unsigned Comparisons
	A Bubble Sort of A Two-Byte Entry Table
	Review
	For Further Study

	Chapter 14. Using Subroutines in Assembly Language
	The S Stack
	Nested Stack Calls
	A BSR for Every RTS
	Other Branch To Subroutines
	Review
	For Further Study

	Chapter 15. Using the Stack to Hold Temporary Results
	Stack Uses
	PSHSes and PULSes
	Multiple Subroutines
	Review
	For Further Study

	Chapter 16. Rotates, Shifts, and Multiplication
	Rotates
	Logical Shifts
	Multiplying and Dividing By Shifting
	Hardware Multiplies
	A 16 by 8 Multiply
	Arithmetic Shifts
	Review
	For Further Study

	Chapter 17. An Unsigned Divide and Signed Multiplies and Divides
	An Unsigned Divide
	Dividing by Larger Numbers
	Doing "Signed" Multiplies and Divides
	Review
	For Further Study

	Chapter 18. Decimal Arithmetic and Miscellaneous Instructions
	The Decimal Instruction
	The RMB Pseudo Op
	Using the U Stack
	The NOP Instruction
	How to Use 6809 Instructions
	Review
	For Further Study

	Chapter 19. Program Origin and Interfacing Assembly Language to BASIC
	Memory Map
	The ORG (Origin) Command and /AO
	Relocatability
	How to Make All Code Relocatable
	Transferring Control to an Assembly-Language Program
	Loading the Object
	Defining Where the Object Is to Basic
	Transferring Control to the Machine-Language Code
	Executing CLRSCN
	Review
	For Further Study

	Chapter 20. Passing Parameters to BASIC Programs
	Passing a Parameter
	Passing a Parameter Back
	A Sample Parameter-Passimg Subroutine
	Running the Subroutine in BASIC
	Review
	For Further Study

	Chapter 21. VARPTR and Passing Multiple Arguments
	The VARPTR Command
	Using VARPTR With Strings
	Using VARPTR With Arrays
	Passing Multiple Arguments
	Review
	For Further Study

	Chapter 22. Using ROM Subroutines
	Cautions on Using ROM Subroutines
	Using Display a Character and Get Keyboard Character
	Display a Character
	Get Keyboard Character

	A Simple Text Editor
	Using ROM Subroutines for Your Own Code
	Review
	For Further Study

	Chapter 23. Addressing Modes, EQU and SET
	Using the S and U Stack Pointers with Indexing
	S and U With Offsets
	Returning From a Subroutine

	Using Auto Increment/Decrement
	Accumulator Offset from R
	Program Counter Relative
	Indirect Addressing
	When is Indirect Addressing Used?
	The EQU and SET Pseudo-Ops
	Review

	Chapter 24. Asembly-Language Graphics
	Basic Vs. Assembly Language
	Memory Layout for Graphics
	Note
	The Text Screen
	The Graphics Screens
	The ZOOM Program
	The SHIFT Subroutine
	The STRIPB Subroutine
	Main Line Code

	Using ZOOM
	Review
	For Further Study

	Chapter 25. Assembly-Language Sound
	How Sound is Generated
	The Digital-to-Analog Converter
	Generating a Sine Wave
	Generating Other Sounds

	A Music Synthesizer
	Parameters
	Program Operation

	A BASIC Driver for MUSSYN
	Review
	For Further Study

	Chapter 26. Writing Larger Assembly-Language Programs
	Program Design
	Program Flowcharting
	Program Coding
	Program Debugging
	Program Documentation
	Review
	For Further Study

	Appendix I. 6809 Instructions Capsulized
	Appendix II. Detailed Instruction Set
	Appendix III. EDTASM+ Commands
	Appendix IV. Binary/Decimal/Hexadecimal Conversions
	To Convert From Binary or Hexadecimal to Decimal
	To Convert From Decimal to Binary or Hexadecimal

	Appendix V. Two's Complement Numbers
	Appendix VI. ASCII Codes for the Color Computer (EDTASM+ Generated)
	Index
	A-B-C
	C Thru L
	L thru S
	S thru Z

	Back Cover

